⑴ 加速度適用路程計算嗎
首先我們要區分瞬時加速度和平均加速度,高中講,當時間差足夠小時,平均加速度可以等於瞬時加速度;用大學的知識解釋這句話,一方面,瞬時加速度是平均加速度的極限,另一方面,瞬時加速度是速度的一階導數。瞬時加速度從某種程度上講是可以不用位移的,它沿v-t圖的切線方向,大小可根據軌跡方程用微積分的有關知識求出;平均速度必然是依賴於位移的,其定義就是速度差比時間差。
下面解釋一下你的例子:例如,一個人從A走到S點,再從S走到Q點,A,S,Q,三點不在同一條直線上,若算他的加速度,是算從A走到S點,再從S走到Q點的總路程還是算從A走到Q點的位移?無論是A到S的加速度或S到Q,A到Q,求平均加速度時,只需用速度差除以時間差。當初末速度方向不在同一直線上時,用三角形法則求出速度差。瞬時加速度則遵循每一段的運動規律,在AS上就是原來的加速度,在SQ上也是原來SQ上的加速度。特別的,加速度在Q點發生突變不易直接得到,由於求點的加速度實際就是求瞬時加速度,而在轉折點的加速度需要用到微積分的知識,在此不再贅述。
⑵ 高中物理 有關力矩的問題
跟扳手原理一樣 力矩 指的是你施的力(N)成上力臂(m) 所以是Nm 圖片參考:imgcld.yimg/8/n/AD06328079/o/161202050096813872737110 施力N力臂M 所以力矩是N*M 若要在紅點處(力臂m)抗衡此力 要使出n的力 因為是同一個支點
同一個物體 所以 N*M = n*m 施力處離支點越遠 力臂越大 用上圖做計算 我施3N的力去轉動 力臂5m 在紅點處 力臂3m 你要用5N的力搏辯才能抗衡轉動 更詳細資料 zh. *** /wiki/%E5%8A%9B%E7%9F%A9
參考: 我& ***
想想看你施力在支點上 不受其它外力下,它會移動,但不會轉碼逗動吧?
為什麼是Nm? 因為 力矩=施力x力臂 力的單位是N 力臂遲銀賣的單位是m 所以力矩單位是Nm
(i) 力矩:改變角動量 力:改變線動量 很明顯,這兩者是不同的東西, 角動量是指「轉動中的物體所具備的動量」 線動量是指「移動中的物體所具備的動量」 (ii) 力矩越大,代表給物體的角加速度越大 (iii) 力矩的定義是 : 力矩 = 力 x (cross) 力臂 cross的意思就是 「垂直有效」所以要算力與支點的「垂直距離」 2012-02-06 18:23:49 補充: 簡單的來說: 就算是施力的大小一樣, 距離支撐點不同的距離, 所產生的效果也會不一樣吧!!! 類似這樣的原理。
⑶ 高中物理電磁學有什麼重要知識點…麻煩概括一下,順便談談學習心得…
談高中生如何學好物理》
1、在高中理科各科目中,物理科是相對較難學習的一科,學過高中物理的大部分同學,特別是物理成績中差等的同學,總有這樣的疑問:「上課聽得懂,聽得清,就是在課下做題時不會。」這是個普遍的問題,值得物理教師和同學們認真研究。下面就高中物理的學習方法,淺談一些自己的看法,以便對同學們的學習有所幫助。
2、首先分析一下上面同學們提出的普遍問題,即為什麼上課聽得懂,而課下不會作?我作為學理科的教師有這樣的切身感覺:比如讀某一篇文學作品,文章中對自然景色的描寫,對人物心裡活動的描寫,都寫得令人叫絕,而自己也知道是如此,但若讓自己提起筆來寫,未必或者說就不能寫出人家的水平來。聽別人說話,看別人文章,聽懂看懂絕對沒有問題,但要自己寫出來變成自己的東西就不那麼容易了。又比如小孩會說的東西,要讓他寫出來,就必須經過反復寫的練習才能達到那一步。因而要由聽懂變成會作,就要在聽懂的基礎上,多多練習,方能掌握其中的規律和奧妙,真正變成自己的東西,這也正是學習高中物理應該下功夫的地方。功夫如何下,在學習過程中應該達到哪些具體要求,應該注意哪些問題,下面我們分幾個層次來
具體分析。
1、記憶:在高中物理的學習中,應熟記基本概念,規律和一些最基本的結論,即所謂我們常提起的最基礎的知識。同學們往往忽視這些基本概念的記憶,認為學習物理不用死記硬背這些文字性的東西,其結果在高三總復習中提問同學物理概念,能准確地說出來的同學很少,即使是補習班的同學也幾乎如此。我不敢絕對說物理概念背不完整對你某一次考試或某一階段的學習造成多大的影響,但可以肯定地說,這對你對物理問題的理解,對你整個物理系統知識的形成都有內在的不良影響,說不準哪一次考試的哪一道題就因為你概念不準而失分。因此,學習語文需要熟記名言警句、學習數學必須記憶基本公式,學習物理也必須熟記基本概念和規律,這是學好物理科的最先要條件,是學好物理的最基本要求,沒有這一步,下面的學習無從談起。
2、積累:是學習物理過程中記憶後的工作。在記憶的基礎上,不斷搜集來自課本和參考資料上的許多有關物理知識的相關信息,這些信息有的來自一題,有的來自一道題的一個插圖,也可能來自一小段閱讀材料等等。在搜集整理過程中,要善於將不同知識點分析歸類,在整理過程中,找出相同點,也找出不同點,以便於記憶。積累過程是記憶和遺忘相互斗爭的過程,但是要通過反復記憶使知識更全面、更系統,使公式、定理、定律的聯系更加緊密,這樣才能達到積累的目的,絕不能象狗熊掰棒子式的重復勞動,不加思考地機械記憶,其結果只能使記憶的比遺忘的還多。
3、綜合:物理知識是分章分節的,物理考綱能要求之內容也是一塊一塊的,它們既相互聯系,又相互區別,所以在物理學習過程中要不斷進行小綜合,等高三年級知識學完後再進行系統大綜合。這個過程對同學們能力要求較高,章節內容互相聯系,不同章節之間可以互相類比,真正將前後知識融會貫通,連為一體,這樣就逐漸從綜合中找到知識的聯系,同時也找到了學習物理知識的興趣。
4、提高:有了前面知識的記憶和積累,再進行認真綜合,就能在解題能力上有所提高。所謂提高能力,說白了就是提高解題、分析問題的能力,針對一題目,首先要看是什麼問題——力學,熱學,電磁學、光學還是原子物理,然後再明確研究對象,結合題目中所給條件,應用相關物理概念,規律,也可用一些物理一級,二級結論,才能順利求得結果。可以想像,如果物理基本概念不明確,題目中既給的條件或隱含的條件看不出來,或解題既用的公式不對或該用一、二級結論,而用了原始公式,都會使解題的速度和正確性受到影響,考試中得出高分就成了空話。提高首先是解決問題熟練,然後是解法靈活,而後在解題方法上有所創新。這裡麵包括對同一題的多解,能從多解中選中一種最簡單的方法;還包括多題一解,一種方法去順利解決多個類似的題目。真正做到靈巧運用,信手拈來的程度。
綜上所術,學習物理大致有六個層次,即首先聽懂,而後記住,練習會用,漸逐熟練,熟能生巧,有所創新,從基礎知識最初目標,最終達到學習物理的最高境界。
在物理學習過程中,依照從簡單到復雜的認知過程,對照學習的六個層次,逐漸發現自己所在的位置及水平,找出自己的不足,進而確定自己改進和努力方向。
高中階段的學習是為大學學習做准備的,對同學們自學能力提出了更高的要求,以上所述的物理學習的基本過程——記憶,積累,綜合,提高就是對自己自學能力的培養過程,學會了學習方法,對物理科有了興趣,掌握了物理這門實驗學科與實際結合比較緊密的特點,經過自己艱苦的努力,定會把高中物理學好。
2》如何學好物理
物理這門自然科學課程比較比較難學,靠死記硬背是學不會的,一字不差地背下來,出個題目還是照樣不會作。物理課初中、高中、大學各講一遍,初中定性的東西多,高中定量的東西多,大學定量的東西更多了,而且要用高等數學去計算。那麼,如何學好物理呢?
要想學好物理,應當能夠做到不僅是能把物理學好,其它課程如數學、化學、語文、歷史等都能夠學好,也就是說學什麼,就能學好什麼。實際上在學校里,我們見到的學習好的學生,哪科都學得好,學習差的學生哪科都學得差,基本如此,除了概率很小的先天因素外,這里確實存在一個學習方法問題。
誰不想做一個學習好的學生呢,但是要想成為一名真正學習好的學生,第一條就要好好學習,就是要敢於吃苦,就是要珍惜時間,就是要不屈不撓地去學習。樹立信心,堅信自己能夠學好任何課程,堅信「能量的轉化和守恆定律」,堅信有幾份付出,就應當有幾份收獲。關於這一條,請看以下三條語錄:
我決不相信,任何先天的或後天的才能,可以無需堅定的長期苦乾的品質而得到成功的。
——狄更斯(英國文學家)
有的人能夠遠遠超過其他人,其主要原因與其說是天才,不如說他有專心致志堅持學習和不達目的決不罷休的頑強精神。
——道爾頓(英國化學家)
世界上最快而又最慢,最長而又最短,最平凡而又最珍貴,最容易被忽視而最令人後悔的就是時間。
——高爾基(蘇聯文學家)
以上談到的第一條應當說是學習態度,思想方法問題。第二條就是要了解作為一名學生在學習上存在如下八個環節:制定計劃→課前預習→專心上課→及時復習→獨立作業→解決疑難→系統總結→課外學習。這里最重要的是:專心上課→及時復習→獨立作業→解決疑難→系統總結,這五個環節。在以上八個環節中,存在著不少的學習方法,下面就針對物理的特點,針對就「如何學好物理」,這一問題提出幾點具體的學習方法。
(一)三個基本。基本概念要清楚,基本規律要熟悉,基本方法要熟練。關於基本概念,舉一個例子。比如說速率。它有兩個意思:一是表示速度的大小;二是表示路程與時間的比值(如在勻速圓周運動中),而速度是位移與時間的比值(指在勻速直線運動中)。關於基本規律,比如說平均速度的計算公式有兩個經常用到V=s/t、V=(vo+vt)/2。前者是定義式,適用於任何情況,後者是導出式,只適用於做勻變速直線運動的情況。再說一下基本方法,比如說研究中學問題是常採用的整體法和隔離法,就是一個典型的相輔形成的方法。最後再談一個問題,屬於三個基本之外的問題。就是我們在學習物理的過程中,總結出一些簡練易記實用的推論或論斷,對幫助解題和學好物理是非常有用的。如,「沿著電場線的方向電勢降低」;「同一根繩上張力相等」;「加速度為零時速度最大」;「洛侖茲力不做功」等等。
(二)獨立做題。要獨立地(指不依賴他人),保質保量地做一些題。題目要有一定的數量,不能太少,更要有一定的質量,就是說要有一定的難度。任何人學習數理化不經過這一關是學不好的。獨立解題,可能有時慢一些,有時要走彎路,有時甚至解不出來,但這些都是正常的,是任何一個初學者走向成功的必由之路。
(三)物理過程。要對物理過程一清二楚,物理過程弄不清必然存在解題的隱患。題目不論難易都要盡量畫圖,有的畫草圖就可以了,有的要畫精確圖,要動用圓規、三角板、量角器等,以顯示幾何關系。 畫圖能夠變抽象思維為形象思維,更精確地掌握物理過程。有了圖就能作狀態分析和動態分析,狀態分析是固定的、死的、間斷的,而動態分析是活的、連續的。
(四)上課。上課要認真聽講,不走思或盡量少走思。不要自以為是,要虛心向老師學習。不要以為老師講得簡單而放棄聽講,如果真出現這種情況可以當成是復習、鞏固。盡量與老師保持一致、同步,不能自搞一套,否則就等於是完全自學了。入門以後,有了一定的基礎,則允許有自己一定的活動空間,也就是說允許有一些自己的東西,學得越多,自己的東西越多。
(五)筆記本。上課以聽講為主,還要有一個筆記本,有些東西要記下來。知識結構,好的解題方法,好的例題,聽不太懂的地方等等都要記下來。課後還要整理筆記,一方面是為了「消化好」,另一方面還要對筆記作好補充。筆記本不只是記上課老師講的,還要作一些讀書摘記,自己在作業中發現的好題、好的解法也要記在筆記本上,就是同學們常說的「好題本」。辛辛苦苦建立起來的筆記本要進行編號,以後要經學看,要能做到愛不釋手,終生保存。
(六)學習資料。學習資料要保存好,作好分類工作,還要作好記號。學習資料的分類包括練習題、試卷、實驗報告等等。作記號是指,比方說對練習題吧,一般題不作記號,好題、有價值的題、易錯的題,分別作不同的記號,以備今後閱讀,作記號可以節省不少時間。
(七)時間。時間是寶貴的,沒有了時間就什麼也來不及做了,所以要注意充分利用時間,而利用時間是一門非常高超的藝術。比方說,可以利用「回憶」的學習方法以節省時間,睡覺前、等車時、走在路上等這些時間,我們可以把當天講的課一節一節地回憶,這樣重復地再學一次,能達到強化的目的。物理題有的比較難,有的題可能是在散步時想到它的解法的。學習物理的人腦子里會經常有幾道做不出來的題貯存著,念念不忘,不知何時會有所突破,找到問題的答案
(八)向別人學習。要虛心向別人學習,向同學們學習,向周圍的人學習,看人家是怎樣學習的,經常與他們進行「學術上」的交流,互教互學,共同提高,千萬不能自以為是。也不能保守,有了好方法要告訴別人,這樣別人有了好方法也會告訴你。在學習方面要有幾個好朋友。
(九)知識結構。要重視知識結構,要系統地掌握好知識結構,這樣才能把零散的知識系統起來。大到整個物理的知識結構,小到力學的知識結構,甚至具體到章,如靜力學的知識結構等等。
(十)數學。物理的計算要依靠數學,對學物理來說數學太重要了。沒有數學這個計算工具物理學是步難行的。大學里物理系的數學課與物理課是並重的。要學好數學,利用好數學這個強有力的工具。
(十一)體育活動。健康的身體是學習好的保證,旺盛的精力是學習高效率的保證。要經常參加體育活動,要會一種、二種鍛煉身體的方法,要終生參加體育活動,不能間斷,僅由興趣出發三天打魚兩天曬網地搞體育活動,對身體不會有太大好處。要自覺地有意識地去鍛煉身體。要保證充足的睡眠,不能以減少睡覺的時間去增加學習的時間,這種辦法不可取。不能以透支健康為代價去換取一點好成績,不能動不動就講所謂「沖刺」、「拼搏」,學習也要講究規律性,也就是說總是努力,不搞突擊。
以上粗淺地談了一些學習方法,更具體地、更有效的學習方法需要自己在學習過程中不斷摸索、總結,別人的方法也要通過自己去檢驗才能變為自己的東西
3》淺談如何學好物理
在中學階段,尤其高中階段,對物理這門課程大多數學生感到頭疼,認為物理最難學是最枯燥無味的,因此對學習物理失去信心,產生這種現象的原因很多,但其中最重要的原因是對物理學科缺乏全面的了解,因而導致他們對學習物理有一個錯誤的認識——「數學難,化學不易推理,物理公式記不完」 ,簡單的認為學習物理,只要多記一些公式就能學好 ,如何改變學生這種錯誤的認識呢? 從教師教的方面來說,除了嚴格按照教學常規,認真備課,精心上課外,還應在課堂教學中滲透以下幾個方面內容,幫助學生樹立學好物理的堅定信念,使學生對物理有一個全面認識,以尋找一個正確的學習方法:
一、注重物理與其他各科的聯系
物理是以實驗為基礎的一門綜合性學科,它源於自然,涉及人們的日常生活,工農業生產和科學技術各個領域,在中學階段還與語文、數學、化學、歷史、地理等學科有著密不可分的聯系。它屬於理科,既有文科特點,又有理科特點、就單純學習方法來看我認為物理是介乎與文理之間的,許多學生誤認為學習物理,就象學數學一樣,記住公式並能進行演繹推理,就可以了,這是及其錯誤的,要學好物理,不僅要具備一定的語文知識,數學知識,還要具備一定的地理,歷史及其他學科的基礎知識,更重要的是要運用語文的理解能力,聯想能力及發散思維能力和高度概括歸納能力,又要運用數學的抽象思維能力,邏輯推理能力。例如:我在講解機械能守恆定律時就注意強調以下幾點:1、物理所有定理、定律都是以一定的條件為前提的。機械能守恆定律也有條件。2、講清守恆的涵義(變中不變)。3、該定律不僅只說機械能守恆的條件,還說明機械能在什麼情況不守恆(變化),變化量由誰決定,既除重力、彈力做功外,其它所做的功 代數和不為零。4、該定律在應用時關鍵在於確定一個過程兩個狀態。即研究對象所經歷的力學過程,應了解研究對象在此過程中的受力情況,以及各力對研究對象做功多少,而不必考慮過程中的每一狀態,所指兩個狀態是指研究對象在過程開始和結束時所處狀態,要找出研究對象分別在初態、末態時距零勢能面(點)高度,彈簧相對原長發生形變,物體速率等狀態。通過以上四步分析,學生真正掌握了機械能守恆定律的內涵、外延、做到心中有數,融會貫通。以上分析,既有語文知識的應用,又有數學能力的體顯。
二、加強理解,強化記憶
學習物理不能死記,硬背公式,更不能生搬硬套公式,常言說得好:「理解是最好的記憶」,物理公式從表面上看與數學公式相同,其運算方法與數學公式也相同,但它們與數學公式有著本質的區別。數學公式只是表達子變數與因變數之間的函數關系有普遍意義,沒有實際意義。物理公式每一個字母都有一定的實際意義,表示確定的物理概念,不能單純的從函數關系去理解。如 a= F /m表示加速度大小與物體受到的合外力成正比,與物體的質量成反比,加速度的方向與合外力的方向一致,即物體的加速度只由物體所受合外力決定。當 F =0時 a=0,m=0時,a不存在是正確的。但變形為 F=m a 就不能認為F與m、a的乘積成正比。此式的真正涵義為要使質量為m的物體產生加速度為a外界必須給物體施加ma大小的外力,即合外力等於m與a乘積,實際上其大小隻與研究對象與周圍物體的相互作用有關,與物體質量及加速度沒有關系。當a=0時,物體受到的外力仍然存在,只不過是合外力為零罷了。類似的公式還有很多,這里就不一一列舉了,在教學中只有真正搞清數學公式與物理公式的區別和聯系,弄清物理公式中每一個量值(字母)的真正涵義,才能進一步鞏固學生所學的物理概念,進而克服把物理公式數學化的錯誤,才能克服就公式而死記硬背公式的不良習慣。力學部分:
1、基本概念:
力、合力、分力、力的平行四邊形法則、三種常見類型的力、力的三要素、時間、時刻、位移、路程、速度、速率、瞬時速度、平均速度、平均速率、加速度、共點力平衡(平衡條件)、線速度、角速度、周期、頻率、向心加速度、向心力、動量、沖量、動量變化、功、功率、能、動能、重力勢能、彈性勢能、機械能、簡諧運動的位移、回復力、受迫振動、共振、機械波、振幅、波長、波速
2、基本規律:
勻變速直線運動的基本規律(12個方程);
三力共點平衡的特點;
牛頓運動定律(牛頓第一、第二、第三定律);
萬有引力定律;
天體運動的基本規律(行星、人造地球衛星、萬有引力完全充當向心力、近地極地同步三顆特殊衛星、變軌問題);
動量定理與動能定理(力與物體速度變化的關系 — 沖量與動量變化的關系 — 功與能量變化的關系);
動量守恆定律(四類守恆條件、方程、應用過程);
功能基本關系(功是能量轉化的量度)
重力做功與重力勢能變化的關系(重力、分子力、電場力、引力做功的特點);
功能原理(非重力做功與物體機械能變化之間的關系);
機械能守恆定律(守恆條件、方程、應用步驟);
簡諧運動的基本規律(兩個理想化模型一次全振動四個過程五個物理量、簡諧運動的對稱性、單擺的振動周期公式);簡諧運動的圖像應用;
簡諧波的傳播特點;波長、波速、周期的關系;簡諧波的圖像應用;
3、基本運動類型:
運動類型 受力特點 備注
直線運動 所受合外力與物體速度方向在一條直線上 一般變速直線運動的受力分析
勻變速直線運動 同上且所受合外力為恆力 1. 勻加速直線運動
2. 勻減速直線運動
曲線運動 所受合外力與物體速度方向不在一條直線上 速度方向沿軌跡的切線方向
合外力指向軌跡內側
(類)平拋運動 所受合外力為恆力且與物體初速度方向垂直 運動的合成與分解
勻速圓周運動 所受合外力大小恆定、方向始終沿半徑指向圓心
(合外力充當向心力) 一般圓周運動的受力特點
向心力的受力分析
簡諧運動 所受合外力大小與位移大小成正比,方向始終指向平衡位置 回復力的受力分析
4、基本方法:
力的合成與分解(平行四邊形、三角形、多邊形、正交分解);
三力平衡問題的處理方法(封閉三角形法、相似三角形法、多力平衡問題—正交分解法);
對物體的受力分析(隔離體法、依據:力的產生條件、物體的運動狀態、注意靜摩擦力的分析方法—假設法);
處理勻變速直線運動的解析法(解方程或方程組)、圖像法(勻變速直線運動的s-t圖像、v-t圖像);
解決動力學問題的三大類方法:牛頓運動定律結合運動學方程(恆力作用下的宏觀低速運動問題)、動量、能量(可處理變力作用的問題、不需考慮中間過程、注意運用守恆觀點);
針對簡諧運動的對稱法、針對簡諧波圖像的描點法、平移法
5、常見題型:
合力與分力的關系:兩個分力及其合力的大小、方向六個量中已知其中四個量求另外兩個量。
斜面類問題:(1)斜面上靜止物體的受力分析;(2)斜面上運動物體的受力情況和運動情況的分析(包括物體除受常規力之外多一個某方向的力的分析);(3)整體(斜面和物體)受力情況及運動情況的分析(整體法、個體法)。
動力學的兩大類問題:(1)已知運動求受力;(2)已知受力求運動。
豎直面內的圓周運動問題:(注意向心力的分析;繩拉物體、桿拉物體、軌道內側外側問題;最高點、最低點的特點)。
人造地球衛星問題:(幾個近似;黃金變換;注意公式中各物理量的物理意義)。
動量機械能的綜合題:
(1) 單個物體應用動量定理、動能定理或機械能守恆的題型;
(2) 系統應用動量定理的題型;
(3) 系統綜合運用動量、能量觀點的題型:
① 碰撞問題;
② 爆炸(反沖)問題(包括靜止原子核衰變問題);
③ 滑塊長木板問題(注意不同的初始條件、滑離和不滑離兩種情況、四個方程);
④ 子彈射木塊問題;
⑤ 彈簧類問題(豎直方向彈簧、水平彈簧振子、系統內物體間通過彈簧相互作用等);
⑥ 單擺類問題:
⑦ 工件皮帶問題(水平傳送帶,傾斜傳送帶);
⑧ 人車問題;人船問題;人氣球問題(某方向動量守恆、平均動量守恆);
機械波的圖像應用題:
(1)機械波的傳播方向和質點振動方向的互推;
(2)依據給定狀態能夠畫出兩點間的基本波形圖;
(3)根據某時刻波形圖及相關物理量推斷下一時刻波形圖或根據兩時刻波形圖求解相關物理量;
(4)機械波的干涉、衍射問題及聲波的多普勒效應。
電磁學部分:
1、 基本概念:
電場、電荷、點電荷、電荷量、電場力(靜電力、庫侖力)、電場強度、電場線、勻強電場、電勢、電勢差、電勢能、電功、等勢面、靜電屏蔽、電容器、電容、電流強度、電壓、電阻、電阻率、電熱、電功率、熱功率、純電阻電路、非純電阻電路、電動勢、內電壓、路端電壓、內電阻、磁場、磁感應強度、安培力、洛倫茲力、磁感線、電磁感應現象、磁通量、感應電動勢、自感現象、自感電動勢、正弦交流電的周期、頻率、瞬時值、最大值、有效值、感抗、容抗、電磁場、電磁波的周期、頻率、波長、波速
2、 基本規律:
電量平分原理(電荷守恆)
庫倫定律(注意條件、比較-兩個近距離的帶電球體間的電場力)
電場強度的三個表達式及其適用條件(定義式、點電荷電場、勻強電場)
電場力做功的特點及與電勢能變化的關系
電容的定義式及平行板電容器的決定式
部分電路歐姆定律(適用條件)
電阻定律
串並聯電路的基本特點(總電阻;電流、電壓、電功率及其分配關系)
焦耳定律、電功(電功率)三個表達式的適用范圍
閉合電路歐姆定律
基本電路的動態分析(串反並同)
電場線(磁感線)的特點
等量同種(異種)電荷連線及中垂線上的場強和電勢的分布特點
常見電場(磁場)的電場線(磁感線)形狀(點電荷電場、等量同種電荷電場、等量異種電荷電場、點電荷與帶電金屬板間的電場、勻強電場、條形磁鐵、蹄形磁鐵、通電直導線、環形電流、通電螺線管)
電源的三個功率(總功率、損耗功率、輸出功率;電源輸出功率的最大值、效率)
電動機的三個功率(輸入功率、損耗功率、輸出功率)
電阻的伏安特性曲線、電源的伏安特性曲線(圖像及其應用;注意點、線、面、斜率、截距的物理意義)
安培定則、左手定則、楞次定律(三條表述)、右手定則
電磁感應想像的判定條件
感應電動勢大小的計算:法拉第電磁感應定律、導線垂直切割磁感線
通電自感現象和斷電自感現象
正弦交流電的產生原理
電阻、感抗、容抗對交變電流的作用
變壓器原理(變壓比、變流比、功率關系、多股線圈問題、原線圈串、並聯用電器問題)
3、 常見儀器:
示波器、示波管、電流計、電流表(磁電式電流表的工作原理)、電壓表、定值電阻、電阻箱、滑動變阻器、電動機、電解槽、多用電表、速度選擇器、質普儀、迴旋加速器、磁流體發電機、電磁流量計、日光燈、變壓器、自耦變壓器。
4、 實驗部分:
(1)描繪電場中的等勢線:各種靜電場的模擬;各點電勢高低的判定;
(2)電阻的測量:①分類:定值電阻的測量;電源電動勢和內電阻的測量;電表內阻的測量;②方法:伏安法(電流表的內接、外接;接法的判定;誤差分析);歐姆表測電阻(歐姆表的使用方法、操作步驟、讀數);半偏法(並聯半偏、串聯半偏、誤差分析);替代法;*電橋法(橋為電阻、靈敏電流計、電容器的情況分析);
(3)測定金屬的電阻率(電流表外接、滑動變阻器限流式接法、螺旋測微器、游標卡尺的讀數);
(4)小燈泡伏安特性曲線的測定(電流表外接、滑動變阻器分壓式接法、注意曲線的變化);
(5)測定電源電動勢和內電阻(電流表內接、數據處理:解析法、圖像法);
(6)電流表和電壓表的改裝(分流電阻、分壓電阻阻值的計算、刻度的修改);
(7)用多用電表測電阻及黑箱問題;
(8)練習使用示波器;
(9)儀器及連接方式的選擇:①電流表、電壓表:主要看量程(電路中可能提供的最大電流和最大電壓);②滑動變阻器:沒特殊要求按限流式接法,如有下列情況則用分壓式接法:要求測量范圍大、多測幾組數據、滑動變阻器總阻值太小、測伏安特性曲線;
(10)感測器的應用(光敏電阻:阻值隨光照而減小、熱敏電阻:阻值隨溫度升高而減小)
5、 常見題型:
電場中移動電荷時的功能關系;
一條直線上三個點電荷的平衡問題;
帶電粒子在勻強電場中的加速和偏轉(示波器問題);
全電路中一部分電路電阻發生變化時的電路分析(應用閉合電路歐姆定律、歐姆定律;或應用「串反並同」;若兩部分電路阻值發生變化,可考慮用極值法);
電路中連接有電容器的問題(注意電容器兩極板間的電壓、電路變化時電容器的充放電過程);
通電導線在各種磁場中在磁場力作用下的運動問題;(注意磁感線的分布及磁場力的變化);
通電導線在勻強磁場中的平衡問題;
帶電粒子在勻強磁場中的運動(勻速圓周運動的半徑、周期;在有界勻強磁場中的一段圓弧運動:找圓心-畫軌跡-確定半徑-作輔助線-應用幾何知識求解;在有界磁場中的運動時間);
閉合電路中的金屬棒在水平導軌或斜面導軌上切割磁感線時的運動問題;
兩根金屬棒在導軌上垂直切割磁感線的情況(左右手定則及楞次定律的應用、動量觀點的應用);
帶電粒子在復合場中的運動(正交、平行兩種情況):
①. 重力場、勻強電場的復合場;
②. 重力場、勻強磁場的復合場;
③. 勻強電場、勻強磁場的復合場;
④. 三場合一;
復合場中的擺類問題
⑷ 寶馬iX3亮相廣州車展,聽說三目攝像頭和勵磁電機很厲害| 視頻
這次廣州車展,特斯拉沒推新車,期待的ModelY跳票了。
但是作為傳統勢力的新能源中堅,寶馬可沒閑著,iX3作為重磅車型被圍的水泄不通。
▲寶馬iX3:配三目攝像頭和勵磁電機
時長約5分鍾,建議WiFi下觀看
寶馬iX3在廣告牌上有一行字:天生電動。
車聚君覺得有點意思,是說它的平台是純電平台?那燃油版X3會一臉問號。可能的解釋是,寶馬早在1972年就推出了自己的電動車,之後i3也一度是前Model3時代的一個電動車標桿,而iX3搭載的是它的第五代eDrive電驅系統。
據車展現場的寶馬銷售介紹,勵磁電機的好處是:初段就能爆發400牛米的峰值扭矩,起步更迅猛,同時在高轉速區仍具有持續的扭矩輸出,適合跑高速。
看了下配置表,iX3的百公里電耗是16.7kWh/100km,而ModelY的電耗剛剛公布,為13.9kWh/100km。
看來,寶馬iX3的勵磁電機為了性能,犧牲了部分電耗。這倒也符合寶馬品牌的DNA,有機會給大家試駕一下動態體驗。
車聚小結
廣州車展落下了帷幕,它有一個節點意義:新勢力的「牌」打的差不多了,該傳統勢力反攻了。
沃爾沃XC40Recharge純電版上市,售價35.7萬;大眾ID.4兄弟車型並肩亮相,起步價25萬以內;上汽R汽車的首款車型MARVELR開啟預售,22萬起。再加上現在這款50萬的寶馬iX3,挺熱鬧。
不過,傳統勢力之前的表現不盡如人意。捷豹I-PACE、奧迪e-tron、賓士EQC,都沒有在中國市場掀起大的浪花。
那麼這回,寶馬iX3能和ModelY一戰嗎?
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑸ 所有寶貝坦克的坦克所有P的力度和其他角度的計算公式
還有跟我一樣喜歡寶貝坦克的同志,雖然沒有分可以拿,但我還是把公式和方法告訴你吧。我是以屏幕上每1厘米為1米來測的
一個屏幕橫向為32厘米(17寸CRT顯示器)
寶貝坦克中木車重力加速度的值為4.8 其他車的我沒測 但是很奇怪 從物理學上分析 所有車子彈的重力加速度應該是一致的但實際情況是每個車都不同
因此 得出了一個結論
s=v2*sin(2a)/4.8
其中V2是初速度平方的意思 學過物理上斜拋運動的朋友應該不陌生 2a就是你開炮的角度乘以2
那麼有人會問
怎麼把V化成寶貝坦克中比較直觀的力呢?
因為時間關系 我只測了木車的 其他車的原理是完全一致的
我們可以這樣的認為
V=at 而a=F/m(牛頓第二定律) 因此v=F*t/m 其中m是恆定的 F牽涉到角度,車種等等很復雜的原因主要是車種影響較大 角度影響不大 由於角度而產生的誤差多為定量誤差
因此 結合上面的 如果固定角不變 就是時間在控制你打的遠近 也就是你按空格時間的長短
但是這個t的衡量標准不是以秒為單位的 而是在1~4的取值(就是力量條上格數)
我們可以建立一個一次函數y=Kx
其中y=v x=t 那麼就要求K了 我們把K稱為比例常數
經過我的測算木車70度的K=5.726
即y=5.726x 50度的和70的稍有不同 但是誤差不大下面會提到的
這樣結果就出來了
比方敵人在1屏位置 你用70度打
那麼S=32 代入公式v2=32*4.8/sin(140)
再把V2開平方一下
得出V=15.46
再轉化到t 既t=15.6/5.726=2.699=2.7
也就是一般習慣說法的2.7力
如果是50度的 我發現這樣算出來的力比實際的要大0.1不到一點定量誤差 我也不知道為什麼 如果覺得看32的屏距惡心 那就看半拋的吧 或者其他40 30的都可以
只不過他們之間換算要有一個比例關系 比方半拋的 也就是1屏20的
那麼實際距離=半拋距離*1.6(其實1.6就是由32/20得來的,如果不喜歡半拋的就把20換成30 40 原理是樣的)
那麼木車的無風以某一力打到位置公式就是(以半拋距離為基準):
距離(1屏20)=(K*力)2*sin(2a)/(4.8*1.6)
其他車的類似所不同的就是把K和4.8改了 上式的(K*力)2中的2是平方的意思。提一下測某個車重力加速度的辦法:選雙車用木頭挖個15CM深的坑(強調17寸CRT顯示器,並且屏幕調的要比較精確,炮口紅針起算) 然後換你要測的車 用1號子彈以0度角很輕的拋進坑裡然後同時按下秒錶 測出從炮口到達15CM深處的時間 多測幾次讓數據更加精確 然後用個公式g=2*15/t2 t2是你剛才測的時間的平方的意思 這樣g就來了
那麼把剛才的公式統統整理,化簡好以後
70度的 實際力=sqr(距離*0.365) sqr是根號的意思難打 我就這么表示了 距離按半拋的看
50度的 實際力=sqr(距離*0.221) 我已經按小0.1的算了 所以就不必再-0.1了
同時把烏龜70度 80度基本力量點的計算方式給大家(也是一屏20等份的)
70度的 實際力=sqr(距離*0.45) 80度的實際力=sqr(距離*0.841) 可能會存在0.05力的誤差 這個只有你自己去調整了
這里提一下如果僅僅是要求某個車某個角度的無風基本力量點 直接用公式 力=sqr(距離*系數) 你可以用已知的某個屏距對應的基本力量點來直接求系數 一般只要原始基本力點對就不會錯 至於距離也不必拘泥於一屏20的 你喜歡哪種就用哪種測 反正這樣出來的系數是固定的
這種辦法適合范圍是變角算力 定角算力取得基本力量點 不用再背死數據 估計模糊力點了
還有使用這套辦法對付普通車的定角算力的時候我發現也可以用力=sqr(距離*系數)這個公式 這個系數只與風大小有關(車種當然也有關) 有興趣的朋友可以去測試一套定角算力的打法出來 這樣就使阿木90度控力等等BT的演算法誕生創造條件
這樣就差不多就寫完了