① 有没有专业的数字货币钱包评测
在2017年底的时候,数字货币经历了爆发式增长,又遭遇了2018年滑铁卢式的下跌,到现阶段的趋于平稳。期间有大批的投资者涌入币圈,各种数字货币的买入卖出都需要经过交易所或数字货币钱包,但在2018年频繁出现交易所数字货币被盗事件,所以越来越多的交易者选择将数字资产放在数字货币钱包中存储,下面就将目前主流的数字货币钱包进行测评,整理出五款最具加知的数字货币钱包,一起来了解一下。
1.比特派(评分:8.5)
比特派是一款基于HD钱包的综合化区块链资产服务产品,主要功能包括:收发、买卖、加速交易等。用户掌控私钥,交易完成后的币,直接归用户自己保管。目前它支持的币种主要包括BTC、BTC分叉币、ETH、部分ERC2.0代币、QTUM、HSR、DASH及分叉币SAFE、LTC及分叉币LCH、ZEC、ETC、DOGE。
优点:在钱包首页最顶端显示当前数字货币的余额,左上角可切换至其它数字货币,货币余额也可从数量切换至法币价值。中间有发币、收币、一键买卖等多种功能,下面显示每笔转账的交易广播情况,完成的交易也可以在交易记录中查询。离开比特派APP界面一段时间后重新进入时需进行解锁,提高了钱包的安全性。
不足:只支持主流币,其他小币种不支持,支持币种数量10+,页面设置不人性化,各种参数,令用户使用困难,另外,安全性堪忧:最近比特派ios版本出现问题,应用无法打开,而且官方表示:如果不小心卸载,钱包内资产可能无法找回!目前还在于苹果公司沟通中。
下载地址:bitpie.com
2. 极客钱包(评分:8.2)
极客钱包是一款简单便捷的轻钱包,支持比特币(BTC)、莱特币(LTC)、以太坊(ETH)、EOS、USDT等主流数字货币资产的存储与管理。
优点:安全系数高,采用本地私钥安全机制,以及手机、电脑双备份策略,支持目前主流的币种,平台有一个跳骚市场,可以进行实物资产上链的代币买卖。
不足:USDT交易必须要用0.0001个BTC作为交易手续费,不支持一些小币种,页面优化不错,但功能比较少。
下载地址: www.geekwallet.org、www.geekwallet.cn
3. imToken(评分:8)
imToken是一款移动端轻钱包App,支持ETH以及以太坊ERC2.0标准的代币(比如EOS、DGD、SNT、QTUM),是目前以太坊系列数字货币的必备钱包。
优点:mToken作为以太坊系列轻钱包,支持以太坊ERC2.0标准的所有代币,可控制每笔发币的矿工费,可设置收款金额,同时交易记录查询便捷、界面清爽、操作简单易上手,因此适合需接收多种ERC2.0标准代币、交易不频繁的ICO投资者。
不足:1.钱包的“发现”模块不够直观。2.只能存放在以太坊平台上开发的代币,像BTC ,NEO 这种自有公链的代币就不能存放,同时那些比特币的分叉币,更不能存放了。
下载地址:token.im
4. Kcash(评分:7.8)
Kcash同样是一款轻钱包,目前支持BTC、ETH、LTC、ETC、ACT和基于以太坊及Achain智能合约平台的数字货币。Kcash拥有跨链和跨合约技术,支持的币种目前还在持续增加中。
优点:Kcash作为多链钱包,支持多类数字货币,对于投资多个系列数字货币的用户非常友好。此外,Kcash还有发红包功能,未来更会推出币币交易、连接银行卡等功能。
不足:功能太多导致易用性比较差,另外安卓版本的兼容性有些问题,部分安卓机型打开app会出现闪退。
下载地址:kcash.com
5. Cobo(评分:7.8)
Cobo是专业的数字资产管理钱包,帮您安全储存资产,独有 POS 增益助您资产增值,支持包括 ETH、EOS、TRX 在内的超过 20 种数字资产,以及超过 500 种代币。
优点:Cobo安全性在同级中处于领先,使用多重安全验证,冷热分离存储,HSM多重签名,Cobo 通过智能投票、 DPOS 票池、 POS 挖矿的数字资产增益矩阵为您提供稳定收益。
不足:页面优化较差,功能复杂上手有点难度,同样存在安卓版本闪退问题。
下载地址:cobo.com
② 小白实操 I 主流数字货币钱包,哪个好用
小白的话,建议先使用轻钱包,比如极客钱包、imtoken、cobo等,操作简单比较容易上手。如果金额比较大,建议使用冷钱包,不过操作相对复杂一些
③ 浅谈如何选择适合你的区块链钱包
区块链钱包我是这样认为的
现在的数字货币钱包就像是我们平常接触的钱包,很多但是材质不同。
如果是货币多的话,建议多几个分散存储,至于选取的话,选大的靠谱的交易方便的。
④ imToken是什么东西
imToken是区块链初创公司杭州融识科技(ConsenLabs)推出的主打产品,该团队拥有两年多的行业经验,曾参与过国所和区块链数据存证平台的搭建,对区块链技术的开发非常感兴趣,尤其是纳瞎羡以太坊技术为核心的,还是中国以太坊爱好者。
伴随着区块链技术在各行各业的渗透,尤其是金融领域的实洞拍践,越来越多的实体资产被映射到区块链神衫上,成为了业界公认的数字资产。Token有别于传统电子资产的一个重要特点是,利用区块链点对点价值转移的特性,实现资产所有权高效、安全的转化。私有密钥是确定所有权的最佳方法,再加上区块链数据库可追溯、不可篡改的特点,使现实世界中的资产第一次将以数字化的方式在虚拟世界中流动。
简单地说,imToken是一个支持多种资产类型的数字钱包,目前默认支持ETH、DGD、MKR、REP、DAO、GNT。
⑤ 数字货币钱包大全,该用哪个钱包,看完这篇就够了
在储布和挖矿方面,我推荐和数硬件钱包和家佳保智能家庭矿机,产品最核心优势只有两个字:安全。
以和数硬件钱包为例。和数硬件钱包优势在于:
一、私钥种子层层加密 物理隔绝永不触网
首先,创建钱包时,生成种子密码存储在本地加密芯片,并强制要求设置10位支付密码。
然后,在钱包中构成交易。此时,需要用户输入支付密码以获得私钥来对交易进行数字签名,交易完成。另外,私钥种子被永久存储于芯片中,物理隔绝永不触网,再也不用担心我的密码被黑客盗取了。
二、银行系统验证金融级别主板和加密芯片
采用银行系统验证金融级别主板,私钥种子存储在芯片中。若产品被窃取或丢失,被恶意暴力破坏时,芯片内部将触发自毁电路,立刻永久性不可恢复地删除该区域的所有信息。
三、支持全球比特币ATM机取款,即时到账,方便快捷。
数字资产之所以引起全球众多领域关注,是因为它正在制造一个全球化的快流通,并且流通领域愈大,范围愈广、其使用价值愈高。数字资产的核心是它作用于各国货币之间的媒介。和数钱包内置多家世界主流交易所,随时随地进行数字资产交易,一机在手,行走全球无忧,再也不用为兑换外币而苦恼了。
四、多方共同签名管理资产
跟常规的数字钱包不同,多重签名钱包需要多个密钥持有者的授权才能转移数字货币,故和数钱包的安全性更高。普通钱包:A想转给X一个比特币,A只需要自己的签名(使用私钥)就可以完成交易。和数钱包:A想转给X一个比特币,设置了一个多重签名验证(ABC3个人中至少需要2个人签名才能转账),那么A想给X转账的时候需要B或C也完成签名(使用私钥)。希望可以帮到您。谢谢!
⑥ 虚拟货币排名
1、BTC:数字黄金
2、 ETH:智能合约和电子现金
3、 BCH:比特币克隆版
4、 XRP:企业转账网络
5、 LTC:更快版本的比特币
6、 DASH:隐私性更强的比特币克隆版
7、 NEO:中国版以太坊
8、 NEM:新经运动数字资产
9、 XMR:匿名数字现金
10、ETC:以太坊克隆版
11、IOTA:物联网转账
12、QTUM:智能合约
13、OMG:银行业、汇款、交易所
14、ZEC:匿名数字现金
15、BCC:类似麦道夫的投资基金
16、LISK:用JAVA编写的分布式APP
17、ADA:分层的数字现金和智能合约
18、TETHER:1美元
19、XLM:数字现金的IOU
20、EOS:在WEBASSEMBLY上的分布式APP
21、HSR:区块链交换器
22、WAVES:分布式交易所和众筹
23、STRATIS:C语言版本的分布式APP
24、KMD:分布式ICO
25、ARK:区块链交换器
26、ETN:克隆版门罗币
27、BCN:匿名版数字现金
28、STEEM:用代币投票的REDDIT
29、ARDR:可以生成区块链的母链
30、BNB:抵偿币安交易费
31、AUGUR:分布式预测市场
32、PPT:区块链的票据金融系统
33、DCR:拥有自主管理机制的比特币
34、PAY:数字货币支付卡
35、MAID:出租硬盘空间
36、BITCOINDARK:克隆版XZC
37、BTS:分布式交易所
38、GNT:出租计算机计算能力
39、PIVX:不会通货膨胀的克隆版DASH
40、GAS:支付NEO的转账费
41、TRX:APP内支付
42、VTC:克隆版比特币
43、MONA:日本版狗狗币
44、FCT:分布式数据记录
45、BAT:分布式广告网络
46、SALT:基于数字货币的抵押网络
47、KNC:分布式交易所
48、DOGE:可爱版比特币克隆币
49、DGD:由公司管理的黄金数字货币化
50、WTC:物联网区块链
51、韭庄BCBOT
⑦ 一个关于波长与折射率的问题
图文]如何提高光传输模式色散测量精确性
极化模式色散是影响下一代40Gbps或更高速率长途传输系统性能的主要因素之一,如果光纤材料或器件选择不当,即使在10Gbps的系统中它也会导致很高的误码率。本文简要介绍光通信系统极化模式色散的测量问题,并讨论如森陆枯何提高测量的精确度。
在10Gbps速率下,极化模式色散(PMD)主要产生原因在于光纤(包括色散补偿光纤)本身;而在40Gbps速率下,光纤和器件(包括掺饵光纤放大器、光隔离器和接头等器件)均会对系统总体PMD产生影响。因此当传输速率增高时,要求器件设计更加严格以确保较低的PMD,对设计要求的提高也相应推动着测试设备制造商提供更加精确的PMD测量设备。
PMD关键参数
对于任何给定光器件,都有一个最慢群速输入主极化态(PSP-)和一个最快群速输入主极化态(PSP+),一般情况下有两个输入和两个(不同的)输出主极化态(PSP0±和PSP1±),并且这些主极化态通常和器件本征极化态都不相同。要注意的是,极化模式色散理论完全是针对那些没有极化相关损耗(PDL)器件而开发的,对于极化相关损耗PDL>0的情况,PMD理论很复杂且不够完善,因此下面部分的内容不适用于极化相关损耗PDL>0的情此洞况。
主极化态具有其它极化态所没有的特点。对没有极化相关损耗的器件,主极化态之间呈正交关系,输入极化态映射到两个主极化态上的能悉慧量形成在链路上分离的两个模(即它们的初级谐波不交换能量),因此用输入端初始条件可以描述信号在器件链路上任何一点的变化情况。
对一个给定器件,在特定波长λ下快速PSP和慢速PSP信号到达时间之差称为差分群延迟DGD(λ),显然,这是任何两个不同极化态信号之间可能的最大延迟。通常光纤链路上的DGD与链路长度平方根成正比,或随所安装的器件数量而增大。如果链路DGD很大,那么差分延迟将造成较大误码率,因此使DGD远远小于位码长度是高速长途传输的关键。
理论上DGD的值等于相位改变除以频率增量,即
DGD=Δφ/Δω(Δω/ω=-Δλ/λ)
相位差指琼斯矩阵从频率ω到频率ω+Δω的变化量,因此测量DGD常常涉及频率/波长之比,通常用一个可调激光器实现波长递增。DGD越小波长增量Δλ必须越大,以确保器件在固有噪声限制范围外工作,相位噪声决定了器件的DGD分辨率下限。宽频器件允许较大步长,因此对测量小DGD值几乎没有限制,相对而言窄频器件在较小DGD值情况下要受器件本身噪声和精度失真的影响。
相位变化大于2π将会造成混淆,由此也决定了波长增量的上限,因为如果波长增量过大,Δφ将因大于2π而无法从Δφ+2π中区分出来,这一效应限制了波长增量Δλ的最大可测DGD。根据经验我们得出一个有用的规则,即最大可测量延迟DGDmax和波长增量Δλmax的关系可以表示为:
DGDmax·Δλmax<λ2/2c
在1,550nm处,用该式可得
DGDmax·Δλmax<4ps·nm 因此,当1,550nm处测量且波长增量为1nm时,DGD必须小于4ps以避免搞混。
从某种意义上说,测量DGD时正确选择波长增量有点像测电压时正确选择电压表的量程范围,如果Δλ太小,就像试图用量程为3V的电压表测量0.05V电压,而不是用量程0.1V的电压表;如果太大,相应的相位变化将超过上限DGDmax。只有正确设置Δλ才能有效利用设备所提供的精确度。
PMD统计特性
对于由多个组件构成的复合器件,总的DGD与每个子部件的PSP相对方位有关,如第k个子部件的PSPo+(k)和PSPi+(k+1)之间的角度αk。在环境因素如压力或温度改变的时候,PSP(k)之间的方位稳定性将决定器件PMD特性,如果由于环境因素波动致使方位发生变化,那么DGD和器件的总PSP位置也将会随时间而改变,PMD被定义为该DGD值的时域平均值。
如果PSP稳定且不随环境因素改变,那么PMD将是确定的,这样即使环境因素改变或经过一段时间,器件的DGD和PSP也不会发生明显的变化。大多数短程光器件就是这种情况。
但如果PSP要随环境因素而发生变化,则被测系统中子部件的数量将对PMD产生很大影响。如能够确定所有初始方位(αk)及其改变量(Δαk),那么理论上可以计算出相应的变化ΔDGD和ΔPSP。但事实上这只有在器件仅由很少几个子部件构成时才可能,假如器件有上千个子部件则将是无法计算的(如像一段光纤中1至5米长度都必须看作是独立的部件)。对于此类子部件,其初始方位无法确定,不过就算是可以准确确定,αk的微小变化也将导致DGD和总PSP很大波动,使得实际分析预测完全没有办法进行。
正因为此,所谓强模耦合器件的PMD特性是随机的,只能由统计学方法进行描述。显然,DGD和PSP随时间(环境)随机变化,也只有从统计角度进行的预测(如平均DGD或概率分布)才有实际意义。不管哪钟情况我们都将DGD分布(一段时间或样本)的平均值定义为PMD,即=PMD。由于经常混用DGD和PMD这两个术语,所以清楚区分两者是非常重要的,记住DGD可随着波长和时间(环境)发生明显的波动,而根据定义PMD与波长和时间无关。
宽带器件如连接器和隔离器的DGD是确定的,几乎不随波长和时间/环境变化而波动,因此在系列测量中DGD分布仅受测量过程本身精确性的影响,通常可得到一个窄对称正态分布,分布的宽度与测量设备有关,而与PMD统计值本身无关。由于我们的目标是设计低PMD器件,所以一般分布集中在PMD小于500fs较小值范围,预计这个值将来会进一步减小。
窄带器件如DWDM多路复用器和多路分用器由于内部结构的原因,这些器件的插入损耗和PMD参数在通频带和抑制频带上明显不同,因为子部件相对方位一般对环境改变不敏感,所以PMD特性也是确定的。这些组件的通频带一般较窄,但由于无法使用较大波长增量Δλ,故而很难对小DGD值进行测量。
对于强模耦合长光纤,理论上DGD的分布是仅有一个自由参数γ的麦克斯韦分布,该参数描述了分布的宽度特性。麦克斯韦分布方程可参见公式(1)。
我们把极化模式色散(PMD)定义为时间的平均值见公式(2)。
上式表明了将PMD定义为DGD平均值的概念,较大PMD值表示分布较宽,意味着出现较大DGD值的几率更大,而较大DGD会严重影响链路的误码率。由于麦克斯韦分布的平均值仅是宽度参数γ的函数,因此测量PMD(平均值)可使我们重建整个麦克斯韦分布并由此推出给定时间内网络DGD发生的概率。
对于均质材料,光波传播在理论上由折射率n、器件长度L和波长λ来描述,环境因素主要影响折射率和器件长度。由于n、L和γ在光传播方程同一个幂指数位置,所以波长变化Δλ与折射率变化Δn或长度变化ΔL效果是一样的。因此当DGD在一个时间段对多个波长采样时,在某波长具有随机特性的器件时域统计DGD将以同样统计参数(形状、平均值和宽度)重现。对所有PMD仪表来说,按时间和波长采样的DGD平均值相等是一个基本假设公式(3)。
通常情况下系统设计人员只对特定波长下某个信道内DGD随时间变化情况感兴趣,所有采用波长采样技术的PMD仪表都可以立即得到测量结果,上式等同性假设可以确保系统操作员得到准确的结果。该等式已经在应用传输线路上经过测试,结果表明等式是正确的,由于在这样的试验中要生成所有可能统计状态(各种环境条件)非常困难,所以好在能得到这样的结果。
显然,DGD和PMD的测量精度不同,必须考虑统计PMD的特性,随机器件(如光纤)PMD测量的不确定性比确定性器件(如隔离器)DGD测量精度涉及的问题要多。
精度影响因素分析
DGD精度
DGD不确定性可由公式(4)计算:
如果没有波长误差(即δ(Δλ)=0),那么DGD误差由设备无法分辨较小相位变化Δφ而引起。任何设备都存在一定的内部相位噪声,这会影响设备的精度。例如测量单模光纤一段几乎没有DGD的短插线,大部分商用琼斯矩阵本征分析(JME)设备使用波长增量Δλ=10nm,测出的噪声为3~5fs。对于这样大的步长,相对不确定性δ(Δλ)/Δλ实际上可以忽略,因此3~5fs的DGD实际上对应2°Δφ[计算如下:Δω(10nm)=7,854×109
1/sec;Δφ=DGD×Δω=5fs×7,854×109
1/sec=4×10-2 rad=2°]。由此可见,此类情况只有相位移在5°~10°左右变化才能得到比较精确的结果。
琼斯矩阵本征分析之类的所有DGD测量技术都使用可调谐激光器,目前最好的可调激光器δ(Δλ)为±10pm,因此步长为100pm时相对波长不确定性为20%,只要相位移远远大于20°则相对δ(Δλ)/Δλ来说它的作用就可以忽略。如果使用不确定性只有δ(Δλ)=1~3pm的外置波长仪来测量波长,将可以极大提高DGD的精确度。
由于可不受限制地增大波长步距,所以即使在测量较小DGD值时,相位也不是宽带确定性器件的主要限制因素。但是对于窄带器件,波长步距Δλ受通带结构限制,一个信道间距为100GHz的多路分路器通频带为50~60GHz,假设PMD相位移为10°(比仪器内部相位大5倍),那么能够准确测量的最小DGD值为公式(5)。
或差不多0.5ps。对于用在40Gb/s系统的低PMD元件来说,这个值显得太大了,当波长增量大于Δλmax时,最大可测DGD由相位测量的不确定性所决定。
可调谐激光源在生成同样波长增量时往往具有同样的误差,即波长误差一般是重复的。波长误差通常向一个方向偏移,通常不会对称分散在指定波长增量周围,这就造成DGD或PMD值偏离平均值。有鉴于此,我们强烈建议在使用小波长步距时利用外部波长仪对波长步距进行测量。
PMD精度
我们知道对于宽带和窄带具有确定性的器件来说,DGD与波长几乎无关,这样我们可以通过扫描一个特定的波长范围得到许多DGD样本,然后计算出平均值,即为PMD值。此时DGD分布可假定为符合高斯分布,PMD测量不确定性为通常标准差σDGD的1/√n倍,n表示DGD采样数量。
如果假设窄带器件的DGD不随波长而发生明显波动,那么可以在通频带内中心波长位置进行系列DGD测量。与插损不同,由于传输信道不在抑制频带工作,所以DGD只对通频带有意义,而抑制频带仅用来抑制相邻信道之间的信号串扰。波长增量Δλ应尽可能大,这样对指定的通频带DGD可以实现最大相位移,因而波长增量仅比通频带宽略小即可。此外由于结果出自标准测量程序,且PMD测量的不确定性又由σDGD决定,所以可认为DGD分布符合正态分布。要注意的是,任何较大的系统波长增量偏移都将表现为系统误差δ(Δλ),并会立即引起整个DGD分布函数偏移,且PMD值也出现偏移,因此这类器件较小PMD值测量必须要有较高波长测量精度。
对于那些有许多极化模耦合的器件如光纤来说,在不同时间(环境)和波长DGD表现为随机变化,但即便如此,间隔非常近的两个波长所测得的DGD值仍然在某种程度上具有相关性。这种相关性意味着如果知道λ1处的DGD,则可以适当地预测λ2处DGD值的概率,前提是λ2-λ1小于典型的波长间隔。这种关联性有些类似于近期和中远期天气预报,通常第二天的天气预报比较可靠,但下一周的情况就有些模糊。存在相关性的波长(频率)间隔被称为PMD带宽ΔBλ,对一个符合麦克斯韦分布的器件,PMD带宽由ΔBλ=0.64/PMD得到,它与PMD值成反比。在1,550nm波长处,该等式可简化为ΔBλ=(5.1/PMD),这里PMD以ns形式表示。
PMD越大则PMD带宽越小,并且在给定波长范围DGD、PSP和极化状态的变化将越快。由于PMD带宽表示DGD发生明显变化的波长范围,用于单个DGD测量的波长增量Δλ应远小于PMD带宽ΔBλ,否则单个DGD测量仅仅是对DGD进行平滑处理。
显然,要准确重现麦克斯韦分布必须对不同环境条件下的多个DGD值进行采样,否则PMD值的估计将是不准确的。就相关性而言,两个值(DGD(λ1)和DGD(λ2))只有在波长间隔(λ2-λ1)足够大的前提下从统计上来说才是独立的,因此对于随机模式耦合器件,相邻DGD值之间的波长间隔应略大于ΔBλ。
然而这就出现一个问题,因为PMD带宽限定了在指定扫描范围的测量中进行统计独立采样数量的上限。由于实际扫描范围由λstart和λstop限定,因此独立样本的数量大约在[ωstop-ωstart]/ΔBλ~ωstop-ωstart]×PMD之间,所以扫描范围和PMD带宽减小都将影响PMD精度,这可从理论上用公式(6)进行验证:
即使独立DGD测量精度非常高也无法超越这一局限,因为这是第一原则,并且仅假定DGD符合麦克斯韦分布,所以它对任何PMD测量技术都适用。
对于PMD为10ps的器件,可调范围10nm得到的ΔPMD不确定性相对较好,为±10%或1ps;但是对于PMD为1ps的器件,使用10nm范围其不确定率为±30%,相对来说就比较大了(以百分比来说),这样就必须扫描100nm波长以使预计误差降低到10%左右。和这些相对较大的内部不确定性比较,大多数情况下因波长或相位错误造成的设备误差都可以忽略。 本文结论 DGD不确定性与很多因素有关,包括波长增量改变引起的波长误差以及设备内部相噪声。通过使用外部波长仪而不靠可调激光器内部步长精度,可以显著改善波长不确定性。设备PMD的内部相噪声会对最小DGD值的下限产生影响,窄频器件通频带宽限制了波长改变增量,目前已成为此类模型得到较低PMD值的巨大障碍。对于具有随机特性的宽频类光纤器件,PMD精度主要由缩小的可调范围和PMD带宽决定,只有很少的情况下可以实现不确定率好于±10%。
⑧ 数字货币钱包选哪个
市面上这么多数字货币钱包,可以说各有各的功能特点,今天为大家分析一下,市面上几款主流钱包,究竟哪一款更适合你。
1、比特派
比特派是由比太团队研发的比特币钱包,是一款基于HD钱包的综合化区块链资产服务产品。作为一款综合性钱包,比特派功能多样,包括:收发、买卖、加速交易等。目前支持币种主要有BTC、BTC分叉币、ETH、部分ERC2.0代币、QTUM、HSR、DASH及分叉币SAFE、LTC及分叉币LCH、ZEC、ETC、DOGE。
比特派支持多地址发币,内置OTC及交易所(第三方服务),可以方便的与世界各地的用户进行币币交易及OTC交易。因此适合交易频繁和有场外交易需求的币圈专业用户使用。
安全性方面,用户掌控私钥,交易完成后,币直接归用户自己保管。如果长时间不操作,比特派会自动上锁,也进一步提高了钱包的安全性。
不足:对于初始用户,功能太多太复杂反而是一种累赘。他们只需简单收发数字货币,太多复杂功能增加了用户的学习时间成本,影响钱包用户的体验。
2、imtoken
imToken是一款移动端轻钱包App,支持ETH以及以太坊ERC2.0标准的代币(比如EOS、DGD、SNT、QTUM),是目前以太坊系列数字货币的必备钱包。
imToken核心功能包括资产管理、私钥自持、一键添加、行情等功能。
imToken支持数字货币的收发、买卖。代币管理功能操作简单,代币自动发现,无需手动添加;支持一键搜索,可以轻松查看与管理多种imToken支持的代币。imToken一次只能向单一地址转账,转账时可控制每笔发币的矿工费,可设置收款金额,其交易记录查询便捷、界面清爽、操作简单易上手。
imToken可以通过一个身份创建多链钱包,无需多个工具混乱管理你的多个私钥,一个身份即可管理不同的链资产以及各种代币;行情功能可以看到当前区块链相关的最新行情,数字货币交易动向等。
不足:imToken只支持基于ETH主链的数字货币,像BTC、CTC这种自有公链的代币不能存放。转账时只支持ETH作为手续费,存在一定局限性。
3、WeCredit
WeCredit钱包是一款移动端钱包App,由覆盖全球金融价值网络的Credit Tag Chain团队研发,已上线腾讯应用宝市场。目前,其主要模块有钱包、矿场、糖果频道。
⑨ 请问什么是DG CERT和DGD
关于危险品误申报的通知
1、危险品申报必须在订舱阶段进行并且取得船公司的批准,提单/提单样本与所提交的危险品申报信息之间出现的任何不符,将会产生危险品误申报费。此罚金不会以任何方式限制由于误申报而产生的其它罚款或费用,并由发货人承担。
2、如果以非危险品申报订舱的货柜在离港后发现实属危险品,将会产生危险品误申报费。此罚金不会以任何方式限制由于瞒报漏报而产生的其它罚款或费用,并由发货人承担。
具体通知如下:
近日国外媒体发表一篇《船舶事故失控?(Vessels accidents out of control?)》的文章,文章分析如下:
在过去的几个月里,航运事故已经成为日常事务。从“Grande America”号沉没、运力5700TEU的“E.R.Kobe”号于越南到中国的途中遭遇了双重火灾、赫伯罗特旗下运力7510TEU的"Yantian Express"号大火以及到MSC旗下运力达19224TEU的“MSC ZOE”号在由比利时的安德卫普向德国的不来梅港航行中导致270个集装箱落水,这只是最近几起可怕的事故。
随着对这些事故认知的提升,当然这也是一个令人担忧的警报,我们可以对近来整个事故情况做一些观察统计:
诱发事故与公司规模大小无关
任何规模的公司都遭遇过此类事故。这表明,大公司也不能确保100%的安全,当然这听起来是合乎逻辑的。马士基(Maersk)、地中海航运(MSC)、赫伯罗特(hapago-lloyd)和其他许多排名前十的集装箱航运公司都至少报告了一起严重事故,显然,无论该公司的规模有多大,危险都是存在的。