1. 云尊集团注资收购HashTokenH网:走向发展史上新的里程碑
本期专访HashToken交易所创始人任茂威先生。
任茂威,重庆人,自2014年进入区块链行业,基于此连续创业,创立了庞大的区块链交易所,为中国人创造了全新的数字资产交易方式。2019年1月15日,云尊集团收购HashTokenH网签约仪式在马来西亚吉隆坡举行,标志着HashTokenH网发展史上新的里程碑。
谈及创立HashTokenH网初衷,任茂威表示,区块链作为时代发展下的产物,其交易模式无疑将成为未来资产交易的主流,不仅影响人们生活方式,更可能重塑全球经济形态。HashTokenH网作为创新的去中心化交易平台,以区块链技术为底层,通过分布式自治平台,推动数字资产交易平台的技术、生态和服务进化。
任茂威提到,促成与云尊集团合作的契机,源于双方长达近一年的磨合与信任。他希望通过这次合作,将云尊集团的企业文化、人才优势、市场运作能力和资金优势等,带给HashTokenH网质的提升。
任茂威认为云尊集团的行业优势在于,自2015年成立以来,始终以“大爱”为核心理念与价值观,以打造爱心社会为目标,履行企业社会责任。云尊集团在通证技术应用开发方面拥有强大的专业团队,经验丰富,计划设立云尊通证走廊,成为首个通证推广及实验中心。
任茂威解释,云尊集团选择注资HashTokenH网,原因在于HashTokenH网具有良好资质,数字资产交易所作为区块链行业的重要组成部分,与云尊集团合作能增强双方力量,未来发展前景广阔。此外,HashTokenH网亚洲区孵化中心在海南成立,得益于海南省对区块链产业的政策扶持。
展望未来,任茂威表示,HashTokenH网与云尊集团的收购签约仪式圆满举行,将推动经济快速发展,壮大云尊集团的实业版图,同时为HashTokenH网发展注入新动力。
2. 区块链云签名怎么使用(区块链签名原理)
区块链是怎样应用于电子合同中的?区块链技术因其减少中间环节、减少数据一致性导致的欺诈、提升业务效率和速度、减少交易对手风险以及增加收入、节省成本等特征,受到市场的热捧。
深究其实现原理,区块链通过深度使用密码学算法、特别设计的数据结构和多方参与的共识算法,由机器算法来解决多方交易记录的一致性、可靠存储和防篡改问题,与电子数据存证有着天然的强关联。
首先,电子合同签约记录存储在由多方共同维护的共享账本上,不可篡改,不可抵赖,当然也不会丢失。
其次,电子合同文本、电子合同要素加密存储,包括电子合同参与人也采取加密存储,只有参与人才可以解密查看,在数据上保护签约方隐私。
再次,机器按照预定义的规则(智能合约)严格执行,不再仅靠与第三方一纸协议保证。基于区块链的KYC服务自动检查验证证书有效性和身份,在保证隐私的基础上确保参与人身份有效真实。
作为国内领先的电子合同平台,多年来我们也在不断打磨自身产品,全方位布局智能化。我们的电子合同SaaS产品功能,在原有实名认证和合同签署的两大核心功能基础上,增加了组织管理、审批管理、印章管理、合同起草、合同模板管理、公证存证六大模块。较早前,我们还发布了手写笔迹识别、碎片化存储机制、文印安全防伪等多项技术。此外,针对线上司法处置通道缺失、电子证据效力认定标准不一等问题,我们推出了“实槌”保全系统,以实现证据保全、实时出证,在为客户提供电子合同服务的同时,提供更专业高效的法律保障服务。
【深度知识】区块链之加密原理图示(加密,签名)
先放一张以太坊的架构图:
在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:
秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。
如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。
2、无法解决消息篡改。
如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。
1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。
2、同样存在无法确定消息来源的问题,和消息篡改的问题。
如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。
1、当网络上拦截到数据密文2时,由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。
2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。
如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。
1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后,只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。
经两次非对称加密,性能问题比较严重。
基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:
当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要,之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1,比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。
在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。
无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。
在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢?有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。
为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。
在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。
为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:
在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。
以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?
那么如何生成随机的共享秘钥进行加密呢?
对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥和临时的非对称私钥可以计算出一个对称秘钥(KA算法-KeyAgreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:
对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥与B节点自身的私钥计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。
对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入Nonce),再比如彩虹表(参考KDF机制解决)之类的问题。由于时间及能力有限,故暂时忽略。
那么究竟应该采用何种加密呢?
主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。
密码套件是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。
在整个网络的传输过程中,根据密码套件主要分如下几大类算法:
秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。
消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。
批量加密算法:比如AES,主要用于加密信息流。
伪随机数算法:例如TLS1.2的伪随机函数使用MAC算法的散列函数来创建一个主密钥——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。
在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。
握手/网络协商阶段:
在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等
身份认证阶段:
身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。
消息加密阶段:
消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。
消息身份认证阶段/防篡改阶段:
主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。
ECC:EllipticCurvesCryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成公钥、私钥的算法。用于生成公私秘钥。
ECDSA:用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。主要用于身份认证阶段。
ECDH:也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。主要用于握手磋商阶段。
ECIES:是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH),H-MAC函数(MAC)。
ECC是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。ECDSA则主要是采用ECC算法怎么来做签名,ECDH则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。ECIES就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。
metacharset="utf-8"
这个先订条件是为了保证曲线不包含奇点。
所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:
所有的非对称加密的基本原理基本都是基于一个公式K=kG。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法就是要保证该公式不可进行逆运算(也就是说G/K是无法计算的)。*
ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。
我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据kG计算出我们的公钥K。并且保证公钥K也要在曲线上。*
那么kG怎么计算呢?如何计算kG才能保证最后的结果不可逆呢?这就是ECC算法要解决的。
首先,我们先随便选择一条ECC曲线,a=-3,b=7得到如下曲线:
在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如22=2+2,35=5+5+5。那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。
曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。
现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。
ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。
那么P+Q+R=0。其中0不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。
同样,我们就能得出P+Q=-R。由于R与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。
P+R+Q=0,故P+R=-Q,如上图。
以上就描述了ECC曲线的世界里是如何进行加法运算的。
从上图可看出,直线与曲线只有两个交点,也就是说直线是曲线的切线。此时P,R重合了。
也就是P=R,根据上述ECC的加法体系,P+R+Q=0,就可以得出P+R+Q=2P+Q=2R+Q=0
于是乎得到2P=-Q(是不是与我们非对称算法的公式K=kG越来越近了)。
于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。
假若2可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。
那么我们是不是可以随机任何一个数的乘法都可以算呢?答案是肯定的。也就是点倍积计算方式。
选一个随机数k,那么k*P等于多少呢?
我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描述成二进制然后计算。假若k=151=10010111
由于2P=-Q所以这样就计算出了kP。这就是点倍积算法。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。
至于为什么这样计算是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:
我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?
ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:
在曲线上选取一个无穷远点为基点G=(x,y)。随机在曲线上取一点k作为私钥,K=k*G计算出公钥。
签名过程:
生成随机数R,计算出RG.
根据随机数R,消息M的HASH值H,以及私钥k,计算出签名S=(H+kx)/R.
将消息M,RG,S发送给接收方。
签名验证过程:
接收到消息M,RG,S
根据消息计算出HASH值H
根据发送方的公钥K,计算HG/S+xK/S,将计算的结果与RG比较。如果相等则验证成功。
公式推论:
HG/S+xK/S=HG/S+x(kG)/S=(H+xk)/GS=RG
在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C=A+C+B=(A+C)+B。
这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考AliceAndBob的例子。
Alice与Bob要进行通信,双方前提都是基于同一参数体系的ECC生成的公钥和私钥。所以有ECC有共同的基点G。
生成秘钥阶段:
Alice采用公钥算法KA=ka*G,生成了公钥KA和私钥ka,并公开公钥KA。
Bob采用公钥算法KB=kb*G,生成了公钥KB和私钥kb,并公开公钥KB。
计算ECDH阶段:
Alice利用计算公式Q=ka*KB计算出一个秘钥Q。
Bob利用计算公式Q'=kb*KA计算出一个秘钥Q'。
共享秘钥验证:
Q=kaKB=ka*kb*G=ka*G*kb=KA*kb=kb*KA=Q'
故双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。
在以太坊中,采用的ECIEC的加密套件中的其他内容:
1、其中HASH算法采用的是最安全的SHA3算法Keccak。
2、签名算法采用的是ECDSA
3、认证方式采用的是H-MAC
4、ECC的参数体系采用了secp256k1,其他参数体系参考这里
H-MAC全程叫做Hash-.其模型如下:
在以太坊的UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。
首先,以太坊的UDP通信的结构如下:
其中,sig是经过私钥加密的签名信息。mac是可以理解为整个消息的摘要,ptype是消息的事件类型,data则是经过RLP编码后的传输数据。
其UDP的整个的加密,认证,签名模型如下:
你必须了解的,区块链数字签名机制????区块链使用Hash函数实现了交易信息和地址信息的不可篡改,保证了数据传输过程中的完整性,但是Hash函数无法实现交易信息的不可否认性(又称拒绝否认性、抗抵赖性,指网络通信双方在信息交互过程中,确信参与者本身和所提供的信息真实同一性,即所有参与者不可否认或抵赖本人的真实身份,以及提供信息的原样性和完成的操作与承诺)。区块链使用公钥加密技术中的数字签名机制保证信息的不可否认性。
????数字签名主要包括签名算法和验证算法。在签名算法中,签名者用其私钥对电子文件进行签名运算,从而得到电子文件的签名密文;在验证算法中,验证者利用签名者的公钥,对电子文件的签名密文进行验证运算,根据验证算法的结果判断签名文件的合法性。在签名过程中,只有签名者知道自己的私钥,不知道其私钥的任何人员无法伪造或正确签署电子文件;在验证过程中,只有合法的签名电子文件能有效通过验证,任何非法的签名文件都不能满足其验证算法。
????常用的数字签名算法包括RSA数字签名、DSA数字签名、ECDSA数字签名、Schnorr数字签名等算法。
???我们以RSA数字签名来介绍:可能人们要问RSA签名和加密有什么区别呢?加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说,加密是为了防止信息被泄露,而签名是为了防止信息被篡改。
???例子:A收到B发的消息后,需要进行回复“收到”--RSA签名过程:
???首先:A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。
???然后:A用自己的私钥对消息加签,形成签名,并将加签的消息和消息本身一起传递给B。
???最后:B收到消息后,在获取A的公钥进行验签,如果验签出来的内容与消息本身一致,证明消息是A回复的。
????在这个过程中,只有2次传递过程,第一次是A传递加签的消息和消息本身给B,第二次是B获取A的公钥,即使都被敌方截获,也没有危险性,因为只有A的私钥才能对消息进行签名,即使知道了消息内容,也无法伪造带签名的回复给B,防止了消息内容的篡改。
综上所述,来源于书本及网络,让我们了解的有直观的认识。
3. 区块链协议如何验证
区块链常见的三大共识机制区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。
可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。
所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。
区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。
不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。
目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)
接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景
概念:
工作量证明机制(Proofofwork),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。
工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。
应用:
POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的BlockHash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。
而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到BlockHash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。
如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。
假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。
优缺点
优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。
缺点:需要消耗大量的算法,达成共识的周期较长
概念:
权益证明机制(ProofofStake),要求证明人提供一定数量加密货币的所有权。
权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。
应用:
2012年,化名SunnyKing的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。
为了实现POS,SunnyKing借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。
上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。
优缺点:
优点:缩短达成共识所需的时间,比工作量证明更加节约能源。
缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证
概念:
授权股权证明机制(DelegatedProofofStake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。
授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。
同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
应用:
比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。
见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。
DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。
优缺点:
优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证
缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。
区块链中的每个区块中记录要经历哪些验证环节?
会经历三个验证环节,分别是:
1.账本验证问题实际上对于第一个问题,很容易想到解决方法,那就是少数服从多数,如果某个节点的账本数据被篡改了,那么只需要和全网其他节点的数据比对,就必然能发现异常。但问题在于,随着时间的推移,记录的累积,数据量会越来越庞大,记得在13年的时候,笔者下载的比特币钱包,从网络同步下载下来的交易账本数据就已经多达几十GB,如果说要对这么大的数据进行逐一传输、比对,可以说是不现实的。
2.账户所有权的证明如果我要通过某个账户给另一个账户转账,必然需要证明我对此账户的所有权。对于中心化的货币系统,我们只需要向银行出示密码即可,但是对于去中心化的系统,如果我们也通过出示密码给其他节点,来证明我们对账户的所有权,那么我们的密码也就泄露给了其他节点(即用户)。
3.事实上这是一个现代密码学中比较基础的问题,说白了就是如何在不暴露自己私钥的前提下,自证身份,也有很成熟的解决方法:利用非对称加密算法。关于算法的细节,计划在后面单独说说现代密码学的一些基础算法,这里我们就用类比的方法描述一下。
4.记账问题:去中心化的前提就是,时刻需要有节点在线,否则就没有人处理记账、验证交易等工作,那么,比特币有什么机制,让人们心甘情愿的时刻保持在线呢?我们之前说过,比特币_10分钟,会将这10分钟内的交易数据打包记录成一个区块,也就是记账。但是不是所有人都有权利去记账的,全网的每个节点,都会去计算一个问题,只有第一个解出符合要求的答案的节点,才有记账权,而作为奖励,该节点会得到一定数量的比特币。
5.随着比特币的价格越来越高,越来越多的人参与到这种解题竞赛中去,并将这一过程戏称为“挖矿”,也正是这些“矿工”,维持着整个比特币网络的运转。而这也就是比特币的发行过程:_10分钟,通过奖励矿工的形式,产生新的比特币。
如何检测区块链智能合约的风险等级高低随着上海城市数字化转型脚步的加快,区块链技术在政务、金融、物流、司法等众多领域得到深入应用。在应用过程中,不仅催生了新的业务形态和商业模式,也产生了很多安全问题,因而安全监管显得尤为重要。安全测评作为监管重要手段之一,成为很多区块链研发厂商和应用企业的关注热点。本文就大家关心的区块链合规性安全测评谈谈我们做的一点探索和实践。
一、区块链技术测评
区块链技术测评一般分为功能测试、性能测试和安全测评。
1、功能测试
功能测试是对底层区块链系统支持的基础功能的测试,目的是衡量底层区块链系统的能力范围。
区块链功能测试主要依据GB/T25000.10-2016《系统与软件质量要求和评价(SQuaRE)第10部分:系统与软件质量模型》、GB/T25000.51-2016《系统与软件质量要求和评价(SQuaRE)第51部分:就绪可用软件产品(RUSP)的质量要求和测试细则》等标准,验证被测软件是否满足相关测试标准要求。
区块链功能测试具体包括组网方式和通信、数据存储和传输、加密模块可用性、共识功能和容错、智能合约功能、系统管理稳定性、链稳定性、隐私保护、互操作能力、账户和交易类型、私钥管理方案、审计管理等模块。
2、性能测试
性能测试是为描述测试对象与性能相关的特征并对其进行评价而实施和执行的一类测试,大多在项目验收测评中,用来验证既定的技术指标是否完成。
区块链性能测试具体包括高并发压力测试场景、尖峰冲击测试场景、长时间稳定运行测试场景、查询测试场景等模块。
3、安全测评
区块链安全测评主要是对账户数据、密码学机制、共识机制、智能合约等进行安全测试和评价。
区块链安全测评的主要依据是《DB31/T1331-2021区块链技术安全通用要求》。也可根据实际测试需求参考《JR/T0193-2020区块链技术金融应用评估规则》、《JR/T0184—2020金融分布式账本技术安全规范》等标准。
区块链安全测评具体包括存储、网络、计算、共识机制、密码学机制、时序机制、个人信息保护、组网机制、智能合约、服务与访问等内容。
二、区块链合规性安全测评
区块链合规性安全测评一般包括“区块链信息服务安全评估”、“网络安全等级保护测评”和“专项资金项目验收测评”三类。
1、区块链信息服务安全评估
区块链信息服务安全评估主要依据国家互联网信息办公室2019年1月10日发布的《区块链信息服务管理规定》(以下简称“《规定》”)和参考区块链国家标准《区块链信息服务安全规范(征求意见稿)》进行。
《规定》旨在明确区块链信息服务提供者的信息安全管理责任,规范和促进区块链技术及相关服务的健康发展,规避区块链信息服务安全风险,为区块链信息服务的提供、使用、管理等提供有效的法律依据。《规定》第九条指出:区块链信息服务提供者开发上线新产品、新应用、新功能的,应当按照有关规定报国家和省、自治区、直辖市互联网信息办公室进行安全评估。
《区块链信息服务安全规范》是由中国科学院信息工程研究所牵头,浙江大学、中国电子技术标准化研究院、上海市信息安全测评认证中心等单位共同参与编写的一项建设和评估区块链信息服务安全能力的国家标准。《区块链信息服务安全规范》规定了联盟链和私有链的区块链信息服务提供者应满足的安全要求,包括安全技术要求和安全保障要求以及相应的测试评估方法,适用于指导区块链信息服务安全评估和区块链信息服务安全建设。标准提出的安全技术要求、保障要求框架如下:
图1区块链信息服务安全要求模型
2、网络安全等级保护测评
网络安全等级保护测评的主要依据包括《GB/T22239-2019网络安全等级保护基本要求》、《GB/T28448-2019网络安全等级保护测评要求》。
区块链作为一种新兴信息技术,构建的应用系统同样属于等级保护对象,需要按照规定开展等级保护测评。等级保护安全测评通用要求适用于评估区块链的基础设施部分,但目前并没有提出区块链特有的安全要求。因此,区块链安全测评扩展要求还有待进一步探索和研究。
3、专项资金项目验收测评
根据市经信委有关规定,信息化专项资金项目在项目验收时需出具安全测评报告。区块链应用项目的验收测评将依据上海市最新发布的区块链地方标准《DB31/T1331-2021区块链技术安全通用要求》开展。
三、区块链安全测评探索与实践
1、标准编制
上海测评中心积极参与区块链标准编制工作。由上海测评中心牵头,苏州同济区块链研究院有限公司、上海七印信息科技有限公司、上海墨珩网络科技有限公司、电信科学技术第一研究所等单位参加编写的区块链地方标准《DB31/T1331-2021区块链技术安全通用要求》已于2021年12月正式发布,今年3月1日起正式实施。上海测评中心参与编写的区块链国标《区块链信息服务安全规范》正处于征求意见阶段。
同时,测评中心还参与编写了国家人力资源和社会保障部组织,同济大学牵头编写的区块链工程技术人员初级和中级教材,负责编制“测试区块链系统”章节内容。
2、项目实践
近年来,上海测评中心依据相关技术标准进行了大量的区块链安全测评实践,包括等级保护测评、信息服务安全评估、项目安全测评等。在测评实践中,发现的主要安全问题如下:
表1区块链主要是安全问题
序号
测评项
问题描述
1
共识算法
共识算法采用Kafka或Raft共识,不支持拜占庭容错,不支持容忍节点恶意行为。
2
上链数据
上链敏感信息未进行加密处理,通过查询接口或区块链浏览器可访问链上所有数据。
3
密码算法
密码算法中使用的随机数不符合GB/T32915-2016对随机性的要求。
4
节点防护
对于联盟链,未能对节点服务器所在区域配置安全防护措施。
5
通信传输
节点间通信、区块链与上层应用之间通信时,未建立安全的信息传输通道。
6
共识算法
系统部署节点数量较少,有时甚至没有达到共识算法要求的容错数量。
7
智能合约
未对智能合约的运行进行监测,无法及时发现、处置智能合约运行过程中出现的问题。
8
服务与访问
上层应用存在未授权、越权等访问控制缺陷,导致业务错乱、数据泄露。
9
智能合约
智能合约编码不规范,当智能合约出现错误时,不提供智能合约冻结功能。
10
智能合约
智能合约的运行环境没有与外部隔离,存在外部攻击的风险。
3、工具应用
测评中心在组织编制《DB31/T1331-2021区块链技术安全通用要求》时,已考虑与等级保护测评的衔接需求。DB31/T1331中的“基础设施层”安全与等级保护的安全物理环境、安全通信网络、安全区域边界、安全计算环境、安全管理中心等相关要求保持一致,“协议层安全”、“扩展层安全”则更多体现区块链特有的安全保护要求。
测评中心依据DB31/T1331相关安全要求,正在组织编写区块链测评扩展要求,相关成果将应用于网络安全等级保护测评工具——测评能手。届时,使用“测评能手”软件的测评机构就能准确、规范、高效地开展区块链安全测评,发现区块链安全风险,并提出对应的整改建议
区块链如何更好的保证电子合同效力电子合同本身就是一种电子数据,具有易篡改与易删除等安全缺陷,不利于该服务的长期发展。为了保证用户在电子合同平台上签署的电子文件与电子合同的法律效力,需要对电子合同签署的全过程进行存证。
在根据区块链存证技术实现的“法链”应用中,平台将对电子合同签署的关键环节进行存档,并将关键信息与数据分布存储到整个区块链当中,从而实现电子合同的全流程存证。
深究其实现原理,区块链通过深度使用密码学算法、特别设计的数据结构和多方参与的共识算法,由机器算法来解决多方交易记录的一致性、可靠存储和防篡改问题,与电子数据存证有着天然的强关联。
首先,电子合同签约记录存储在由多方共同维护的共享账本上,不可篡改,不可抵赖,当然也不会丢失。
其次,电子合同文本、电子合同要素加密存储,包括电子合同参与人也采取加密存储,只有参与人才可以解密查看,在数据上保护签约方隐私。
再次,机器按照预定义的规则(智能合约)严格执行,不再仅靠与第三方一纸协议保证。基于区块链的KYC服务自动检查验证证书有效性和身份,在保证隐私的基础上确保参与人身份有效真实。
目前,我们的电子合同平台上所签的电子合同都通过区块链技术实现了电子文件数字指纹的分布式存证,进一步强化了平台电子合同的法律效力。
区块链使用安全如何来保证呢区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息)=摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月)=123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(SecureHashAlgorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetriccryptography,又称公共密钥加密,common-keycryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetriccryptography,又称公钥加密,public-keycryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都
4. 区块链认证模式是什么
什么是区块链?区块链有两个含义:
1、区块链(Blockchain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。
2、区块链是比特币的底层技术,像一个数据库账本,记载所有的交易记录。这项技术也因其安全、便捷的特性逐渐得到了银行与金融业的关注。
狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。
广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。
易保全的“区块链+司法+应用”的模式是什么样的呢?
易保全的“区块链+司法+应用”的模式是基于区块链存证,将公证处、司法鉴定中心、仲裁委、互联网法院、版权保护中心、CA机构等纳入保全链开放平台的区块链节点上,让电子数据从产生、存证到最后的使用都有相关司法机构做司法背书,有效保障区块链存证数据的安全性和司法有效性。
目前有三种模式:1.“区块链+司法+电子签约”电子签约领域的君子签,帮助用户将传统的线下纸质合同转移到线上进行签署,通过实名认证、身份认证、签约意愿认证、时间戳、卫星授时、在线签署、实现数据存证、区块链防篡改、签章管理、账户管理、合同管理,数据同步司法机构、达到在线公证、一键出证、智能仲裁、风险代理、诉讼保险。
2.“区块链+司法+知识产权”提供作品在线确权、侵权监测、侵权分析、网络取证、代理维权等一站式知识产权保护服务。帮助摄影师、设计师、律师、作家等用户解决在线出数字版权证书、在线出公证书和司法采信难题。
3.“区块链+互联网司法服务”互联网司法领域的仲证宝,主要是为企业和个人用户提供在线仲裁立案申请、代理执行、证据直通仲裁委等服务,为公证处提供一站式互联网公证系统搭建、公证智能终端和相应的定制化服务,包括网络赋强公证系统、数据存证公证系统、自助公证系统。实现集产品和司法公正为一体的商务合作无纸化一站式服务。
区块链是什么:这样解释区块链更加通俗易懂区块链是比特币的一个重要概念,它本质上是一个去中介化的数据库,同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。
广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。
(4)区块链签约扩展阅读:
区块链的进化方式是:
?区块链1.0——数字货币;
?区块链2.0——数字资产与智能合约;
?区块链3.0——各种行业分布式应用落地。
区块链特征:
1.去中介化。由于使用分布式核算和存储,体系不存在中心化的硬件或管理机构,任意节点的权利和义务都是均等的,系统中的数据块由整个系统中具有维护功能的节点来共同维护。
2.开放性。系统是开放的,除了交易各方的私有信息被加密外,区块链的数据对所有人公开,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。
3.自治性。区块链采用基于协商一致的规范和协议(比如一套公开透明的算法)使得整个系统中的所有节点能够在去信任的环境自由安全的交换数据,使得对“人”的信任改成了对机器的信任,任何人为的干预不起作用。
4.信息不可篡改。一旦信息经过验证并添加至区块链,就会永久的存储起来,除非能够同时控制住系统中超过51%的节点,否则单个节点上对数据库的修改是无效的,因此区块链的数据稳定性和可靠性极高。
5.匿名性。由于节点之间的交换遵循固定的算法,其数据交互是无需信任的(区块链中的程序规则会自行判断活动是否有效),因此交易对手无须通过公开身份的方式让对方对自己产生信任,对信用的累积非常有帮助。
5. 易保全的“区块链+司法+应用”的模式是什么样的呢
易保全的“区块链+司法+应用”的模式是基于区块链存证,将公证处、司法鉴定中心、仲裁委、互联网法院、版权保护中心、CA机构等纳入保全链开放平台的区块链节点上,让电子数据从产生、存证到最后的使用都有相关司法机构做司法背书,有效保障区块链存证数据的安全性和司法有效性。
目前有三种模式:1.“区块链+司法+电子签约”电子签约领域的君子签,帮助用户将传统的线下纸质合同转移到线上进行签署,通过实名认证、身份认证、签约意愿认证、时间戳、卫星授时、在线签署、实现数据存证、区块链防篡改、签章管理、账户管理、合同管理,数据同步司法机构、达到在线公证、一键出证、智能仲裁、风险代理、诉讼保险。
2.“区块链+司法+知识产权”提供作品在线确权、侵权监测、侵权分析、网络取证、代理维权等一站式知识产权保护服务。帮助摄影师、设计师、律师、作家等用户解决在线出数字版权证书、在线出公证书和司法采信难题。
3.“区块链+互联网司法服务”互联网司法领域的仲证宝,主要是为企业和个人用户提供在线仲裁立案申请、代理执行、证据直通仲裁委等服务,为公证处提供一站式互联网公证系统搭建、公证智能终端和相应的定制化服务,包括网络赋强公证系统、数据存证公证系统、自助公证系统。实现集产品和司法公正为一体的商务合作无纸化一站式服务。
6. 近年来北京是如何推动区块链电子签章的发展
2020年4月3日,北京市第十五届人民代表大会常务委员会第二十次会议通过并公布《北京市优化营商环境条例》,自2020年4月28日起施行。文件指出:北京市要“推行全部政务服务事项在网上全程办理”,并多次提及区块链,点明了其降本提效、规范便利、有助于信息化共享的价值。此外,还特别强调了电子签名、电子印章、电子证照的法律效力。
2020年12月3日,北京市经济和信息化局、市政务服务管理局、市公安局印发《北京市电子印章推广应用行动方案(试行)》,提出:2021年北京将逐步推动电子印章在数字版权保护、物品防伪、产品溯源、电子发票、电子病历、电子处方等行业领域的全面推广。
2020年12月22日,北京新闻发布会“回顾‘十三五’ 展望‘十四五’”系列新闻发布会优化营商环境专场,提出:2021年1月1日起,北京市将逐步推行市民在北京市买房不动产登记网上全程办理, 探索 推广电子合同、电子签名、电子印章。
近年来,从中央到地方高频密集下发文件,加快推广电子签章、电子印章、电子合同应用,推动“互联网+政务服务”,深化放管服改革。
积极推进电子签章章在多个行业领域的深度应用,有利于转变政府工作模式,推动数字经济快速发展,同时也给市场主体带来了便利,降低了企业的交易成本,优化了当地的营商环境,有利于激发市场经济活力。
君子签作为易保全旗下国内专业的区块链电子签约平台,创新“区块链+司法+电子签约”模式,通过把成熟可靠的电子签约技术与区块链技术深度融合,为政务部门提供“身份认证、电子签名、印章管控、区块链存证、全证据链保全、司法服务”等一站式电子签约服务,加快推进政务证明、电子证照、服务事项“全程网办”,提升政府数字化服务水平。