导航:首页 > 观区块链 > 区块链节点章

区块链节点章

发布时间:2023-12-27 01:19:23

㈠ BIM+区块链,让城市建设更智慧

这篇文章,我们聊聊区块链和建筑行业的结合及应用。

在开始正文之前,先解释一下BIM的概念。

BIM (Building Information Modeling) 建筑信息模型化。美国国家BIM标准里面对BIM做了如下的解释:

(1) 以数位化方法表达一个设施的物理和功能特性。

(2) 一个共享的知识资源。

(3) 分享跟这个设施相关的信息,在设施的整个生命周期中为所有的对策提供可靠依据的过程。

(4) 在建设项目的不同阶段中,各参与者经由在信息模型中嵌入、提取、更新和修改信息,以支持与反应各自职责的协同作业。

建筑业是当今全球范围最大的行业之一,未来依然将是世界经济增长的关键驱动力。

建筑业在我国国民经济中的地位举足轻重。国家统计局数据显示,2020年我国国内生产总值为 101万亿 元,其中建筑业总产值为 26万亿 ,占比超过 25%

建筑业是一个古老的行业,早在2000多年前的古人就修筑了万里长城、古埃及的金字塔这样的宏伟工程。但是发展至今,建筑业的整体管理水平和效率依然很低,其主要原因大概可归结为以下五点:

1)项目的一次性;

2)组织的松散性和临时性;

3)管理的碎片化;

4)合作的多方性和低效性;

5)生产过程的非标准化和非工业化。

以上原因带来的问题也显而易见:

1) 信任缺失 ,由于项目的一次性、组织的临时性、合作的多方性,带来不可避免的信任缺失。

2) 效率低下 ,由于组织的松散型和临时性,生产过程的非标准化和非工业化,高耗低效,整个建筑行业施工企业的利润水平平均只有3%左右

3) 风险可控性弱 ,由于缺乏系统性的标准化管理体系、管理碎片化,导致工程延期、设计变更、费用索赔几乎每个项目都不可避免。


国内建筑信息化经历了三个阶段,目前正处于第三阶段:

第一阶段: 设计信息化 ,90年代“甩图板”工程推动国内 CAD 技术应用的普及;

第二阶段: 企业信息化管理 ,2005年计算机辅助管理问题解决实现项目和企业管理信息化;

第三阶段: 全生命周期信息化 ,2015年BIM 技术的应用助力建筑业全生命周期信息集成。

1.为何要在建筑领域实施BIM?

住建部 在《 住房城乡建设部关于印发推进建筑信息模型应用指导意见的通知 》中对BIM应用的意义有详细解释,指导意见指出: BIM要为产业链贯通、工业化建造和繁荣建筑创作提供技术保障。也就是说BIM是建筑业工业化转型的技术基础

2.BIM具体能干什么?

1)实现建筑全生命期各参与方在同一多维建筑信息模型基础上的数据共享;

2)支持对工程环境、能耗、经济、质量、安全等方面的分析、检查和模拟;

3)为项目全过程的方案优化和科学决策提供依据;

4)支持各专业协同工作、项目的虚拟建造和精细化管理。

3.建筑工业化的意义

1)工业化生产的材质和装配式的建造方式更容易形成一套规范化系统,确保产品品质;

2)装配式建筑的大部分构件均在工厂完成,整体交付比传统建筑快 30%~50%;

3)装配式建筑现场以干法作业为主,可有效减少能源消耗以及环境污染,低碳环保;

4)装配式建筑由于其可拆除的特性还可以实现重复利用;

5)装配式建造成本的下降空间就目前而言,远高于传统建筑,后期运维费用更低,全生命周期具有更大的成本优势。

建筑工业化转型已成为国家级战略

住建部等各部位近年来陆续出台多项促进建筑业工业化、数字化、绿色建造、智能建造的重要政策。

2021年3月,国务院发布了《十四五规划和2035年远景目标纲要》,纲要明确提出要 发展智能建造,推广绿色建材、装配式建筑和钢结构住宅,建设低碳城市的发展目标

4.建筑业BIM数字化的重要意义

大力发展建筑工业化、数字化、智能化升级,加大智能建造在工程建设各环节应用,实现建筑业转型升级是建筑业乃至国家近10到20年的战略目标。因此,BIM数字化技术在本次建筑业转型升级过程中必将起到基础性重要作用。

建筑工业化转型的方向是 标准化+工厂化+装配式 ,BIM解决的是这个过程中的 数字集成及可视化 问题。

虽然BIM是建筑业工业化转型过程中不可或缺的技术,但是它并不能有效解决生产关系的问题,比如协作多方之间的信任、效率、复杂体系下的碎片化管理等问题。

而解决信任、协作、效率、复杂体系下的碎片化管理恰恰是区块链技术的天然优势,能够很好的与BIM技术形成互补。

因此我们说: 工业化生产(BIM支持)+数字化协作(区块链支持)+大数据决策(AI技术)=智慧建造

我们把建筑全寿命周期分为规划设计、建造、运维三个阶段来举例说明

1.规划设计阶段

跨部门协作审批将是区块链技术应用的主要场景。

规划设计阶段的特点是行政监管角色多,协作审批手续多,区块链技术的去中心化特征恰好适配此类场景,可以极大的提高协作审批效率(多地政府已开始了区块链政务审批系统的试点)。

我们假设规划设计阶段的监管单位有发改委、国土、交通、住建、水利等,再者相关单位包括建设单位、规划设计等咨询单位,他们在区块链上都有各自的节点,并且各自都有自己的信息化管理系统。

当咨询单位创建好第一阶段的BIM概念模型(比如适用于项目建议书),并加载GIS信息、规模、占地、造价等各项经济指标,将模型数据上区块链。

BIM概念模型及项目建议书经建设单位确认后,由建设单位向发改委启动审批手续,区块链智能合约自动发起所有审核流程。

发改委通过密钥访问区块链上BIM概念模型,必要时加载周边基础设施的BIM模型及GIS信息,分析该项目是否符合城市发展总体规划及项目的可行性,将审批结果上区块链,智能合约自动将审批结果的数据文件发送回建设单位。

同样,建设单位启动土地预审相关手续办理,智能合约启动,国土部门通过密钥访问区块链上的BIM占地模型,并进行审查,将审批结果上区块链,智能合约将批复结果的数据文件发送回建设单位。

与此同时,任何监管部门都可通过密钥验证发改委、国土等部门审批结果的真实性。

随着后续可行性研究、初步设计、施工图设计不断对模型的完善,发改委、国土、交通、住建等行业监管部门随时可以通过密钥访问区块链上该项目的BIM模型数据,实时监测项目有没有违规设计、建造。

所有审批工作的流程在线上自动运行,但不再是基于一个中心化的平台,而是基于去中心化的区块链技术,可有效降低协作成本,提高协作效率,并保证数据的隐私和安全。

2.建造阶段

同样我们假设施工单位、监理单位及其他第三方咨询机构在区块链上也有自己的节点,也都有自己的信息化系统,那么他们都可以通过密钥访问区块链上该项目的BIM模型数据。

我们简单地把建造过程分为计划、采购、生产、验收、支付几个环节。并且假设模型和施工阶段的WBS分解结构是一一对应的。

· 计划环节:

承包人可以通过Office系列的Projec软件,或者国内广联达的斑马进行计划编制,将计划数据文件导入区块链上的BIM模型,BIM模型就有了4D的进度可视化属性(如Autodesk系列的InfraWorks可展示),数据中还可以包括资源、资金等计划。所有参建方都可以基于该BIM模型同步开展项目管理。

· 采购环节:

建筑行业具有高度分散和复杂的供应链体系,供应商和承包人的合作可能是临时性的或者一次性的,因此信任较难建立、协作效率较低。

我们先说区块链是如何解决交易的信任问题的。

区块链是用智能合约来完成交易的,比如对于买方,交易之前智能合约首先检测买方数字钱包(央行数字人民币)的余额(抑或者银行授信、担保额度)是否满足交易标的,如果满足则锁定,当买方验收并签收了卖方的货物后,智能合约将锁定的数字人民币点对点自动汇入卖方的数字钱包。

因此区块链解决的并不是买卖双方的互信问题,而是信任已经不再是问题了。

建筑工程中砂石材料用量大,而且采购频繁、来源分散,是建材供应链中最不易掌控的材料之一。

我们假设承包人在料仓中安装了摄像头,承包人的采购系统通过摄像头检测出料仓余料低于预定的阈值(计算机视觉识别技术),系统调用计划数据(Project导入BIM模型的数据)发现未来的用量需求大于料仓总容量,则启动智能合约自动完成砂石料的订单,甚至可以从多个供应商中选择价格最低的。

砂石料供应商不需要加入任何系统,只需要在区块链节点上创建自己的账户就可以完成与承包人的自动化交易协作。

在运输过程中,供应商将运输车辆或船舶的GPS位置通过IOT硬件实时上区块链,承包人的采购系统就可以通过密钥实时追踪到货物的位置,系统可以对材料供货时间是否对生产计划造成影响进行分析(搜索算法),以便重新启动智能合约进行补救。

每一批材料的采购批次、到货时间都可以写入BIM模型对应的位置并写入区块链账本,智能合约将提醒监理单位按材料到场批次组织验收或试验检测工作。

系统可以把项目经理从繁杂的订单、询价、账务处理中解脱出来,更好的投入到更重要的事项上。

· 生产环节:

生产过程必然离不开人和设备。

工业化的一个必然的结果就是效率和质量的提高,而人和设备的过程行为质量将决定产品质量的形成过程。

因此过去以结果为导向的施工过程管理必然要转向工业化的以过程为导向的施工管理,那么每一个分项工程由哪些个班组生产,对每一组混凝土的施工配合比参数进行实时(IOT硬件)监测并写入BIM模型对应的位置,同时将这些数据写入区块链账本,永久保存、不可篡改,生产过程的所有数据应该真实、可信。

我们假设大型构建由吊装设备进行安装,再假设如果在暴雨天气、或者风力超过六级的情况下不适合吊装作业,那么吊装设备通过IOT硬件(或者网络通讯)感应到这种极限状态后,区块链智能合约将提醒现场管理人员将设备恢复到安全状态,直至危险状态解除。

生产过程中每一台设备运行的油耗、用电将通过IOT硬件进行监测,并将这些数据写入区块链账本。

区块链智能合约自动对耗能进行碳排放指标计算(GBT 51366-2019),一旦发现碳排放超过了核定指标,自动在碳交易市场购买新的指标。

前面提到的所有生产设备上的IOT硬件都无需接入参建各方的系统,参建各方只需要通过设备的密钥就可以进行数据访问。也许这个密钥被设备开发商设计成了一个客户端(如APP),那么参建各方只需要安装一个客户端就可以访问设备生成的所有数据。

· 验收环节

我们假设混凝土构建的强度由试验设备(IOT硬件)将数据直接写入BIM模型对应的位置,并写入区块链账本。

构建的外观尺寸、钢筋数量或许可以利用三维激光扫描设备生成点云,与BIM设计模型进行比对,可以根据质量检验评定标准精确计算出蜂窝麻面的百分比,验收精度将远高于人工计算的精度,写入BIM模型的对应位置和区块链账本。

所有参与验收的人员和数据写入区块链账本后永久保存,不可篡改。

假如发生质量问题,区块链上的账本记录就像按时间顺序排列的一笔流水账,从当前记录开始一直向前追溯,谁验收的?谁制造的?谁运输的?谁采购的?谁供应的一目了然。

· 支付阶段:

随着数字人民币的正式发行,并且支持可编程性,当数字人民币进入工程款支付领域后,可以说每一笔工程款的去向已基本固定,都可以在区块链进行追踪,根本不可能发生工程款挪用现象。那么当工程质量经过验收合格,符合智能合约设定的条件,则自动触发智能合约点对点的支付操作。不再经过银行,还可以降低企业的财务成本。

因此根据基本建设程序的规定,未来资金未落实的项目必然得不到开工审批,获得开工审批的项目,承包人、专业分包人、材料供应商甚至劳务人员再也无需担心拖欠工程款的问题了。

当BIM模型与实体建筑物实施锚定,实现数字资产化后,数字资产的所有权在区块链就可以实现流动。

我们假如一个实体工程构件在业主尚未支付工程款以前的所有权还暂时保留在承包人手里,当一个承包人资金出现困难,恰好区块链上的BIM数字资产(锚定了实体工程构件)证明了一定的未来收益(业主未来支付的一笔工程款),那么承包人完全可以将这部分数字资产的所有权进行抵押贷款,智能合约可以锁定未来业主支付的那一笔工程款,用于承包人赎回该笔数字资产的所有权。

3. 运维阶段

在运维阶段很好的一个场景就是设备与设备之间的智能交互。

我们假设一台无人驾驶的巡逻车通过计算机视觉识别系统发现公路上沥青路面的一处缺陷,触发智能合约启动另外一台沥青路面维修车,该维修车同样用智能合约自动下单采购所需要的沥青混合料修复材料,并自动行驶至缺陷处完成修复,在此过程中只有少量的或者根本无需人的干预。

综上所述,区块链技术+BIM可以更好地实现智慧建造,反过来BIM模型又可以作为区块链技术的数据仪表盘,随着IOT硬件的不断涌现(尤其在运维阶段),数据的不断填充,模型的不断刷新,维度越来越饱满,所见即所得,区块链+BIM将会成为一个更加智慧的智慧建造决策系统。


文章中我们列举了规划设计、建造、运维三个阶段中一些点的应用,而现实中的应用场景远不止这些例子,这些例子也仅仅起到以点带面的探讨。

文章中提到的所有技术都是现今已有的或是已经实现的功能(如区块链政务系统、供应链追踪,质量溯源等),欠缺的只是把这些技术整合起来,就像区块链技术原本也不是一项新技术,而是把分布式存储、非对称加密、共识算法等计算机现有技术整合起来,成就了这一伟大发明。

也许有人会说,BIM正向设计在我国建筑行业还未普及,基于BIM的4D、5D数字化建造管理才开始普及,此时探讨区块链技术+BIM的智慧化建造是不是为时过早?

而我想说的是,

BIM的概念早在1975年美国乔治亚理工大学ChuckEastman博士就提出了,2002年Autodesk公司正式提出BIM理念和技术,从3D的可视化开始已经发展到了今天8D的概念。

区块链技术也是早在2008年由中本聪提出,至今除了数字货币,在其他非数字货币领域也有了极为广泛的应用。

就像人工智能技术,

1956年由计算机专家约翰·麦卡锡首次提出,但一直受限于计算机技术和硬件止步不前,直至2012年的ImageNET挑战赛中视觉识别准确率达到95%以上,超越人眼的极限,在突破了计算机硬件和技术限制之后人工智能技术的应用迎来了大爆发,才有了近年来我们手机中美颜相机、语音识别、智能推送等生活应用的集中爆发。

所以说,任何一项技术,在它大规模应用爆发前,能量一直在积累,这是一个必经的过程。一方面可能是技术、硬件的限制,另一个很重要的原因就是懂得人太少、参与的人太少,一旦大家都懂了、都会了,这种爆发力就会自然而然的蓬勃出来。

就像我们在不停地吹一个气球,总有一天它会炸开

如果你也对区块链应用感兴趣,搜索微信公众号“ Candy链上笔记 ”,我们一起前行。



㈡ 什么是区块链扩容

扩容,是当某个容器或承载物不足以支撑或承载现有事物需求时,我们通过扩大容器的容量或承载物的体积来满足日益增长的需求,从而缓解当前容器或承载物所受压力的一种手段。
比特币诞生之初比特币创始人中本聪并没有特意限制区块的大小,区块最大可以达到32MB,当时平均每个区块大小为1~2KB。
时比特币用户少,交易量也没有那么大,并不会造成区块拥堵,然而2013年至今随着比特币价格的直线上升,用户越来越多因此造成比特币网络拥堵,用户交易费用上升的问题逐渐涌现出来。
到现在,比特币区块链上最高时有几十万笔交易积压,比特币的平均交易费用比 2010 年 9 月上涨了 376 倍,每秒 7 笔交易的处理速度已经明显无法满足用户需求,比特币社区开始探索如何给比特币“扩容”。
通过修改比特币底层代码,从而达到提高交易处理能力的目的。
比特币扩容本身发展和设计方案有两种,即第一层和第二层扩容技术。
· 第一层扩容技术即改进区块链自身,把区块链自身变得更快、容量变得更大,总的来说就是改变区块链共识部分的内容。
· 第二层扩容技术目的是把计算移到链下,即通过侧链的技术加以解决问题。
扩容协议及结局
扩容协议一般需要矿工们的支持,大致可以分为修改区块大小、软分叉、硬分叉、隔离见证等方式。
以比特币举例:
比特币现在分裂成为大区块Bitcoin Cash(BCH)和隔离见证。隔离见证现在是市场上公认的比特币,而大区块币被冠名为比特现金。可以预见的往后的发展方向,比特币将会以链下交易为主。包括闪电网络、侧链。这两个新东西目前不成熟,但是被很多人寄予厚望的。
比特币将会大量发展隔离见证交易,并在隔离见证的基础上做更多的衍生技术。最有可能是以技术推动比特币往前发展。
比特现金将会以链上交易为主,重点发展货币功能,以降低交易摩擦为主要方式,以获利更广泛的链上用户量为主要发展方向。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

㈢ 一文看懂互联网区块链

一文看懂互联网区块链

一文看懂互联网区块链,要了解区块链,就不得不从互联网的诞生开始研究区块链的技术发展简史,从中发掘区块链产生的动因,并由此推断区块链的未来。下面让我们一文看懂互联网区块链。

一文看懂互联网区块链1

区块链的鼻祖就是麻将,最早的区块链是中国人发明的!区块链就跟麻将一样,只不过麻将的区块比较少而已,麻将只有136个区块,各地麻将规则不同可视作为比特币的硬分叉。

麻将作为最古老的区块链项目,四个矿工一组,最先挖出13位正确哈希值的获得记账权以及奖励,采用愿赌服输且不能作弊出老千的共识机制!

麻将去中心化,每个人都可以是庄,完全就是点对点。

矿池=棋牌室的老板抽佣。

不可篡改,因为说服其他三个人需要消耗太多算力和体力。

典型的价值互联网。我兜里的价值用不了八圈,就跑到他们兜里去了。

中国人基本上人手打得一手好麻将,区块链方面生产了全球70%~80%的矿机,并拥有全世界最多的算力,约占77%的算力

麻将其实是最早的的区块链项目:

1,四个矿工一组,先碰撞出13个数字正确哈希值的矿工可以获得记账权并得到奖励。

2,不可篡改。因为说服其他三个人需要消耗太多算力和体力。

3,典型的价值互联网。我兜里的价值数字货币www.gendan5.com/digitalcurrency/btc.html用不了八圈,就跑到他们兜里去了。

4、去中心化,每个人都可以是庄,完全就是点对点。

5、UTXO,未花费的交易支出。

还有另外一种赊账的区块链玩法,假设大家身上都没现金

细究一下,在大家达成共识时,我们看不到任何中介或者第三方出来评判丙赢了,大家给丙的奖励也不需要通过第三方转交给丙,都是直接点对点交易,这一过程就是去中心化,牌友们(矿工)各自记录了第一局的战绩,丙大胡自摸十三幺,乙杠了甲东风,记录完成后就生成了一个完整的区块,但要记住,这才只是第一局,在整个区块链上,这才仅仅是一个节点,开头说的8局打完,也就是8个节点(区块),8个区块连接在一起就形成了一个完整账本,这就是区块链。因为这个账本每人都有一个,所以就是分布式账本,目的就是为了防止有人篡改记录,打到最后,谁输谁赢一目了然。

4个男士(甲乙丙丁)凑在一块打麻将来钱,大家都没带现金,于是请一美女(中心化)用本子记账,记录每一局谁赢了多少钱、谁输了多少钱?最后结束时,大家用支付宝或微信支付结总账,但是如果这位美女记账时记错了或者预先被4人中的某人买通了故意记错,就保证不了这个游戏结果的公正公平合理性,你说是不是?那怎么办呢?如果你“打麻将”能用“区块链”作为游戏规则改编为如下:

4个男士(甲乙丙丁)凑在一块打麻将来钱,大家都没带现金,乙说让她带来的美女记账,甲说这位美女我们都不认识,于是甲乙丙丁4人一致约定每个人每局牌都在自己的手机上(区块链节点)同时记账(去中心化),最后打完麻将,直接手机上以电子货币结账时,大家都对一下记账的的结果,本来应该是一样的记账结果。

假设本来结果是甲手机上记的账:乙欠甲10元。但乙手机上的记录却是不欠,可是其余2人(丙、丁)和甲的记账一样,那还是按照少数服从多数规则结算,另外大家心里对乙的诚信印象就差评了,下次打麻将就不会带乙一起玩了。

除非乙预先买通(丙、丁)2人让其故意作假,但乙买通他们2人的代价是10万元(赖账10元的1万倍),那常理上乙只能选择放弃,因为做假成本太高了。

假设即使乙在打牌的过程中,偷偷愿意以高价10万元预先买通丙、丁做这笔巨亏的傻猫交易,但区块链的规则是按时间戳记账的,原来是下午1点钟记账乙欠甲10元的,即丙和丁下午3点钟再改账时,时间是不可逆的,只能记下午3点钟,那就又不吻合游戏规则了。

实际上在2017年博主已经开发出了一套麻将币

中国最早的区块链项目:四个矿工一组,最先从 148 个随机数字中碰撞出 14 个数字正确哈希值的矿工,可以获得一次记账权激励,由于分布式记账需要得到其他几位矿工的共识,因此每次记账交易时间长约十几分钟。

一文看懂互联网区块链2

一、比特币诞生之前,5个对区块链未来有重大影响的互联网技术

1969年,互联网在美国诞生,此后互联网从美国的四所研究机构扩展到整个地球。在应用上从最早的军事和科研,扩展到人类生活的方方面面,在互联网诞生后的近50年中,有5项技术对区块链的未来发展有特别重大的意义。

1、1974诞生的TCP/IP协议:决定了区块链在互联网技术生态的位置

1974年,互联网发展迈出了最为关键的一步,就是由美国科学家文顿瑟夫和罗伯特卡恩共同开发的互联网核心通信技术--TCP/IP协议正式出台。

这个协议实现了在不同计算机,甚至不同类型的网络间传送信息。所有连接在网络上的计算机,只要遵照这个协议,都能够进行通讯和交互。

通俗的说,互联网的数据能穿过几万公里,到达需要的计算机用户手里,主要是互联网世界形成了统一的信息传播机制。也就是互联网设备传播信息时遵循了一个统一的法律-TCP/IP协议。

理解TCP/IP协议对掌握互联网和区块链有非常重要的意义,在1974年TCP/IP发明之后,整个互联网在底层的硬件设备之间,中间的网络协议和网络地址之间一直比较稳定,但在顶层应用层不断涌现层出不穷的创新应用,这包括新闻,电子商务,社交网络,QQ,微信,也包括区块链技术。

也就是说区块链在互联网的技术生态中,是互联网顶层-应用层的一种新技术,它的出现,运行和发展没有影响到互联网底层的基础设施和通讯协议,依然是按TCP/IP协议运转的众多软件技术之一。

2、1984年诞生的思科路由器技术:是区块链技术的模仿对象

1984年12月,思科公司在美国成立,创始人是斯坦福大学的一对夫妇,计算机中心主任莱昂纳德·波萨克和商学院的计算机中心主任桑蒂·勒纳,他们设计了叫做“多协议路由器”的联网设备,放到互联网的通讯线路中,帮助数据准确快速从互联网的一端到达几千公里的另一端。

整个互联网硬件层中,有几千万台路由器工作繁忙工作,指挥互联网信息的传递,思科路由器的一个重要功能就是每台路由都保存完成的互联网设备地址表,一旦发生变化,会同步到其他几千万台路由器上(理论上),确保每台路由器都能计算最短最快的路径。

大家看到路由器的运转过程,会感到非常眼熟,那就是区块链后来的重要特征,理解路由器的意义在于,区块链的重要特征,在1984年的路由器上已经实现,对于路由器来说,即使有节点设备损坏或者被黑客攻击,也不会影响整个互联网信息的传送。

3、随万维网诞生的B/S(C/S)架构:区块链的对手和企图颠覆的对象

万维网简称为Web,分为Web客户端和服务器。所有更新的信息只在Web服务器上修改,其他几千,上万,甚至几千万的客户端计算机不保留信息,只有在访问服务器时才获得信息的数据,这种结构也常被成为互联网的B/S架构,也就是中心型架构。这个架构也是目前互联网最主要的架构,包括谷歌、Facebook、腾讯、阿里巴巴、亚马逊等互联网巨头都采用了这个架构。

理解B/S架构,对与后续理解区块链技术将有重要的意义,B/S架构是数据只存放在中心服务器里,其他所有计算机从服务器中获取信息。区块链技术是几千万台计算机没有中心,所有数据会同步到全部的计算机里,这就是区块链技术的核心,

4、对等网络(P2P):区块链的父亲和技术基础

对等网络P2P是与C/S(B/S)对应的另一种互联网的基础架构,它的特征是彼此连接的多台计算机之间都处于对等的地位,无主从之分,一台计算机既可作为服务器,设定共享资源供网络中其他计算机所使用,又可以作为工作站。

Napster是最早出现的P2P系统之一,主要用于音乐资源分享,Napster还不能算作真正的对等网络系统。2000 年3月14 日,美国地下黑客站点Slashdot邮寄列表中发表一个消息,说AOL的Nullsoft 部门已经发放一个开放源码的Napster的克隆软件Gnutella。

在Gnutella分布式对等网络模型中,每一个联网计算机在功能上都是对等的,既是客户机同时又是服务器,所以Gnutella被称为第一个真正的对等网络架构。

20年里,互联网的一些科技巨头如微软,IBM,也包括自由份子,黑客,甚至侵犯知识产权的犯罪分子不断推动对等网络的发展,当然互联网那些希望加强信息共享的理想主义者也投入了很大的热情到对等网络中。区块链就是一种对等网络架构的软件应用。它是对等网络试图从过去的沉默爆发的标杆性应用。

5、哈希算法:产生比特币和代币(通证)的关键

哈希算法将任意长度的数字用哈希函数转变成固定长度数值的算法,著名的哈希函数如:MD4、MD5、SHS等。它是美国国家标准暨技术学会定义的加密函数族中的一员。

这族算法对整个世界的运作至关重要。从互联网应用商店、邮件、杀毒软件、到浏览器等、,所有这些都在使用安全哈希算法,它能判断互联网用户是否下载了想要的东西,也能判断互联网用户是否是中间人攻击或网络钓鱼攻击的受害者。

区块链及其应用比特币或其他虚拟币产生新币的过程,就是用哈希算法的函数进行运算,获得符合格式要求的数字,然后区块链程序给予比特币的奖励。

包括比特币和代币的挖矿,其实就是一个用哈希算法构建的小数学游戏。不过因为有了激烈的竞争,世界各地的人们动用了强大的服务器进行计算,以抢先获得奖励。结果导致互联网众多计算机参与到这个小数学游戏中,甚至会耗费了某些国家超过40%的电量。

二、区块链的诞生与技术核心

区块链的诞生应该是人类科学史上最为异常和神秘的发明和技术,因为除了区块链,到目前为止,现代科学史上还没有一项重大发明找不到发明人是谁。

2008年10月31号,比特币创始人中本聪(化名)在密码学邮件组发表了一篇论文——《比特币:一种点对点的电子现金系统》。在这篇论文中,作者声称发明了一套新的不受政府或机构控制的电子货币系统,区块链技术是支持比特币运行的基础。

论文预印本地址在http://www.bitcoin.org/bitcoin.pdf,从学术角度看,这篇论文远不能算是合格的论文,文章的主体是由8个流程图和对应的解释文字构成的, 没有定义名词、术语,论文格式也很不规范。

2009年1月,中本聪在SourceForge网站发布了区块链的应用案例-比特币系统的开源软件,开源软件发布后, 据说中本聪大约挖了100万个比特币.一周后,中本聪发送了10个比特币给密码学专家哈尔·芬尼,这也成为比特币史上的第一笔交易。伴随着比特币的蓬勃发展,有关区块链技术的研究也开始呈现出井喷式增长。

向大众完整清晰的解释区块链的确是困难的事情,我们以比特币为对象,尽量简单但不断深入的介绍区块链的技术特征。

1、区块链是一种对等网络(P2P)的软件应用

我们在前文提过,在21世纪初,互联网形成了两大类型的应用架构,中心化的B/S架构和无中心的对等网络(P2P)架构,阿里巴巴,新浪,亚马逊,网络等等很多互联网巨头都是中心化的B/S架构,简单的说,就是数据放在巨型服务器中,我们普通用户通过手机,个人电脑访问阿里,新浪等网站的服务器。

21世纪初以来,出现了很多自由分享音乐,视频,论文资料的软件应用,他们大部分采用的是对等网络(P2P)架构,就是没有中心服务器,大家的个人计算机都是服务器,也都是客户机,身份平等。但这类应用一直没有流行起来,主要原因是资源消耗大,知识版权有问题等。区块链就是这种领域的一种软件应用。

2、区块链是一种全网信息同步的对等网络(P2P)软件应用

对等网络也有很多应用方式,很多时候,并不要求每台计算机都保持信息一致,大家只存储自己需要的的信息,需要时再到别的计算机去下载。

但是区块链为了支持比特币的金融交易,就要求发生的每一笔交易都要写入到历史交易记录中,并向所有安装比特币程序的计算机发送变动信息。每一台安装了比特币软件的计算机都保持最新和全部的.比特币历史交易信息。

区块链的这个全网同步,全网备份的特征也就是常说的区块链信息安全,不可更改来源。虽然在实际上依然不是绝对的安全,但当用户量非常大时,的确在防范信息篡改上有一定安全优势。

3、区块链是一种利用哈希算法产生”通证(代币)”的全网信息同步的对等网络(P2P)软件应用

区块链的第一个应用是著名的比特币,讨论到比特币时,经常会提到的一个名词就是“挖矿”,那么挖矿到底是什么呢?

形象的比喻是,区块链程序给矿工(游戏者)256个硬币,编号分别为1,2,3……256,每进行一次Hash运算,就像抛一次硬币,256枚硬币同时抛出,落地后如果正巧编号前70的所有硬币全部正面向上。矿工就可以把这个数字告诉区块链程序,区块链会奖励50个比特币给矿工。

从软件程序的角度说,比特币的挖矿就是用哈希SHA256函数构建的数学小游戏。区块链在这个小游戏中首先规定了一种获奖模式:给出一个256位的哈希数,但这个哈希数的后70位全部是0,然后游戏者(矿工)不断输入各种数字给哈希SHA256函数,看用这个函数能不能获得位数有70个0的数字,找到一个,区块链程序会奖励50个比特币给游戏者。实际的挖坑和奖励要更复杂,但上面的举例表达了挖矿和获得比特币的核心过程。

2009年比特币诞生的时候,每笔赏金是50个比特币。诞生10分钟后,第一批50个比特币生成了,而此时的货币总量就是50。随后比特币就以约每10分钟50个的速度增长。当总量达到1050万时(2100万的50%),赏金减半为25个。当总量达到1575万(新产出525万,即1050的50%)时,赏金再减半为12.5个。根据比特币程序的设计,比特币总额是2100万。

从上述介绍看,比特币可以看做一个基于对等网络架构的猜数小游戏,每次正确的猜数结果奖励的比特币信息会传递给所有游戏者,并记录到每个游戏者的历史数据库中。

4、区块链技术因比特币的兴起产生的智能合约,通证、ICO与区块链基础平台

从上面的介绍看,比特币的技术并不是从天上掉下来的新技术,而是把原来多种互联网技术,如对等网络架构,路由的全网同步,网络安全的加密技术巧妙的组合在一起,算是一种组合创新的算法游戏。

由于比特币通过运作成为可以兑换法币,购买实物,通过升值获得暴利,全世界都不淡定了。抱着你能做,我也能做的态度,很多人创造了自己的仿比特币软件应用。同时利用政府难以监管对等网络的特点,各种山寨币与比特币一起爆发。这其中出现了很多欺诈和潜逃事件,逐步引起各国政府的关注。

区块链基础平台:用区块链技术框架创建货币还是有相当的技术难度,这时区块链基础平台以太坊等基础技术平台出现了,让普通人也可以方便的创建类“比特币”软件程序,各显神通,请人入局挖币,炒币,从中获得利益。

通证或代币:各家“比特币”、“山寨币”如果用哈希算法创建的猜数小游戏,产生自己的“货币”时,这个“货币”统称“通证”或“代币”。

ICO:由于比特币和以太币已经打通与各国法币的兑换,其他新虚拟币发币时,只允许用比特币和以太币购买发行的新币,这样的发币过程就叫ICO,ICO的出现放大了比特币,以太币的交易量。同时很多ICO项目完全建立在虚无的项目上,导致大量欺诈案例频发。进一步加深了社会对区块链生成虚拟货币的负面认识。

智能合约:可以看做区块链上的一种软件功能,是辅助区块链上各种虚拟币交易的程序,具体的功能就像淘宝上支付宝的资金托管一样,当一方用户收到的货物,在支付宝上进行确认后,资金自动支付个给买家货主,智能合约在比特币等区块链应用上也是承担了这个中介支付功能。

三、区块链技术在互联网中的历史地位和未来前景

1、区块链处于互联网技术的什么位置?是顶层的一种新软件和架构。

我们在前面的TCP/IP介绍中提到,区块链与浏览器、QQ、微信、网络游戏软件、手机APP等一样,是互联网顶层-应用层的一种软件形式。它的运行依然要靠TCP/IP的架构体系传输数据。只是与大部分应用层软件不同,没有采用C/S(B/S)的中心软件架构。而是采用了不常见的对等网络架构,从这一点说,区块链并不能颠覆互联网基础结构。

2、区块链想要颠覆谁?想颠覆万维网的B/S(C/S)结构。

它试图要颠覆其实是89年年诞生的万维网B/S,C/S结构。前面说过。由于89年年欧洲物理学家蒂姆· 伯纳斯· 李发明万维网并放弃申请专利。此后近30年中,包括谷歌,亚马逊,facebook,阿里巴巴,网络,腾讯等公司利用万维网B/S(C/S)结构,成长为互联网的巨头。

在他们的总部,建立了功能强大的中心服务器集群,存放海量数据,上亿用户从巨头服务器中获取自己需要的数据,这样也导致后来云计算的出现,而后互联网巨头把自己没有用完的中心服务器资源开放出来,进一步吸取企业,政府,个人的数据。中心化的互联网巨头对世界,国家,互联网用户影响力越来越大。

区块链的目标是通过把数据分散到每个互联网用户的计算机上,试图降低互联网巨头的影响力,由此可见区块链真正的对手和想要颠覆的是1990年诞生的B/S(C/S)结构。但能不能颠覆掉,就要看它的技术优势和瓶颈。

3、区块链的技术缺陷:追求彻底平等自由带来的困境

区块链的技术缺陷首先来自与它的对等网络架构上,举个例子,目前淘宝是B/S结构,海量的数据存放在淘宝服务器集群机房里,几亿消费者通过浏览器到淘宝服务器网站获取最新信息和历史信息。

如果用区块链技术,就是让几亿人的个人电脑或手机上都保留一份完整的淘宝数据库,每发生一笔交易,就同步给其他几亿用户。这在现实中是完全无法实现的。传输和存储的数据量太大。相当于同时建立几亿个淘宝网站运行。

因此区块链无法应用在数据量大的项目上,甚至小一点的网站项目用区块链也会吃力。到2018年,比特币运行了近10年,积累的交易数据已经让整个系统面临崩溃。

于是区块链采用了很多变通方式,如建立中继节点和闪电节点,这两个概念同样会让人一头雾水,通俗的说,就是区块链会向它要颠覆的对象B/S结构进行了学习,建立数据服务器中心成为区块链的中继节点,也用类浏览器的终端访问,这就是区块链的闪电节点。

这种变动能够缓解区块链的技术缺陷,但确让区块链变成它反对的样子,中心化。由此可见,单纯的区块链技术由于技术特征有重大缺陷,无法像万维网一样应用广泛,如果技术升级,部分采用B/S(C/S)结构,又会使得区块链有了中心化的信息节点,不在保持它诞生时的梦想。

4、从互联网大脑模型看区块链的未来前景

我们知道互联网一般是指将世界范围计算机网络互相联接在一起的网际网络,在这基础上发展出覆盖全世界的全球性互联网络称互联网,即是互相连接一起的网络结构。

从1969年互联网诞生以来,人类从不同的方向在互联网领域进行创新,并没有统一的规划将互联网建造成什么结构,当时间的车轮到达2017年,随着人工智能,物联网,大数据,云计算,机器人,虚拟现实,工业互联网等科学技术的蓬勃发展,当人类抬起头来观看自己的创造的巨系统,互联网大脑的模型和架构已经越来越清晰。

通过近20年的发展依托万维网的B/S,C/S结构,腾讯QQ,微信,Facebook,微博、twitter亚马逊已经发展出类神经元网络的结构。互联网设备特别是个人计算机,手机在通过设备上的软件在巨头的中心服务器上映射出个人数据和功能空间,相互加好友交流,传递信息。互联网巨头通过中心服务器集群的软件升级,不断优化数亿台终端的软件版本。在神经学的体系中,这是一种标准的中枢神经结构。

区块链的诞生提供了另外一种神经元模式,不在巨头的集中服务中统一管理神经元,而是每台终端,包括个人计算机和个人手机成为独立的神经元节点,保留独立的数据空间,相互信息进行同步,在神经学的体系中,这是一种没有中心,多神经节点的分布式神经结构。

有趣的是,神经系统的发育出现过这两种不同类型的神经结构。在低等生物中,出现过类区块链的神经结构,有多个功能相同的神经节,都可以指挥身体活动和反应,但随着生物的进化,这些神经节逐步合并,当进化成为高等生物时,中枢神经出现了,中枢神经中包含大量神经元进行交互。

四、关于区块链在互联网未来地位的判断

1、对比特币的认知:一个基于对等网络架构(P2P)的猜数小游戏,通过高明的金融和舆论运作,成为不受政府监管的”世界性货币”。

2、对区块链的认知:一个利用哈希算法产生”通证(代币)”的全网信息同步的对等网络(P2P)软件应用。

3、区块链有特定的用途,如大规模选举投票,大规模赌博,规避政府金融监管的金融交易等等领域,还是有不可替代的用处。

4、在更多时候,区块链技术会依附于互联网的B/S,C/S结构,实现功能的扩展,但总体依然属于互联网已有技术的补充。对于区块链目前设想的绝大部分应用场景,都是可以用B/S,C/S结构实现,效率可以更高和技术也可以更为成熟。

5、无论是从信息传递效率和资源消耗,还是从神经系统进化看,区块链无法成为互联网的主流架构,更不能成为未来互联网的颠覆者和革命者。

6、当然B/S,C/S结构发展出来的互联网巨头也有其问题,但这些将来可以通过商业的方式,政治的方式逐渐解决。

㈣ 智能合约怎么运用在监狱中

数字化监狱时代已逐步迈向智慧监狱时代,智慧监狱是监狱 信息化建设的最高形态。文章针对智慧监狱中存在的数据中心化、安全性欠缺等方面问题,分析区块链技术应用于智慧监狱中的优势及可行性,采用智能合约技术,给出了基于私有链的智慧监狱管理系统设计,保证了系统信息的共享、保密和不可篡改性。旨在为“区块链+”监狱管理创新模式提供参考。

2016年12月“区块链“首次被写入《国务院关于印发“十三五“国家信息化规划的通知》,监狱系统应该紧跟步伐,积极开拓一条新型发展之路叫区 块链技术最早在2008年中本聪发表的论文中被提出,后来依次经历了以区块链为单位的块链式数据结构的区块链1.0、创建可共用的技术平台的区块链2.0、以价值互联网为内核的区块链3.0。

如今区块链技术逐步发展,引起了国内外的极大重视,下面从以下三个方面来表述近几年区块链技术的发展。

国外制度监管层面:

2015年6月4日,纽约金 融服务部门(NYDFS)发布了数字密码货币公司监管框架BitLincense。2015年10月,奥巴马政府和 私人公司结成“区块链联盟”的伙伴关系,目的是 监管防止将数字密码货币用于非法用途。

2016年1 月19 H,英国政府公布了《分布式总账技术:超 越区块链》;2016年2月,欧洲委员会(EC)宣 布了欧洲反洗钱和反恐怖金融监管规划。

2017年5 月25 H,美国国防高级研究计划局要求印第安的 科技与制造公司(ITAMCO)开发使用区块链协议的平台。

教育科研发展层面:

2015年9月,肖风联合以 太坊创始人Vitalik Buterin和比特股联合创始人沈波共同成立“区块链实验室”,以促进区块链技术的教育;

2016年加州大学伯克利分校推行了针对区块链的本科教育囚;

2018年3月,由牛津大学多名学者联合推出成立了第一所基于区块链技术的大学 “伍尔夫大学”。

企业应用研究层面:

国内外许多企业都已致力于区块链的架构的设计和应用的推广。如文献所述,纽约州电力公司TransActiveGrid建立微电网网络;Linux基金会于2015年提出了超级账本项目; 2016年5月31日,腾讯对区块链在金融应用方面 的合作联盟(深圳)成立;中国人民银行于2017 年成立数字货币研究所。

区块链技术虽然有了极大的进步,但在可行性、安全性和监管方面还需要进一步加强,预计还需 5~10年的时间才可达到成熟期山。伴随区块链技术的逐步完善,基于理论总归要指导实践,否则只是虚的概念的理念,区块链技术得到了广泛应用。

区块链应用于医学的成功案例较多,如全球具有最大规模的区块链公司Guardtime利用区块链各个节点间的共同协商来提升智慧医疗中数据的安全保护,实现100万份数据的安全存储,而将区块链技术应用于监狱信息化的案例较少。

对于智慧监狱来说,安全是一切业务开展的基础条件,信息安全和数据安全是核心要素。文章通过分析当前监狱信息化建设过程中存在的问题,探索基于区块链技术如何减少信任程序、提供安全可靠的数据存储、提高工作处理效率等问题,为区块链于监狱系统的应用落地做必要的知识储备回。

智慧监狱现状分析

1.1智慧监狱的概念

智慧监狱就是在监狱中利用互联网、云计算、大数据整合系统内部的环境、人流、信息流,以智慧通信、智慧控制实现数字化采集信息、网络化传输信息、智能化管理信息,构建数据联动的机制,对监狱数据采用数据挖掘,构成监狱大数据,对大数据进行分析,构建智慧监狱同。

1.2智慧监狱的问题分析

到目前为止,全国监狱已基本布设智能报警系统、监狱围墙周界、综合门禁系统等,监狱信息化 建设水平有了显著提升,但与理想状态还有差距,主要表现在以下几方面:

信息共享程度低

数据壁垒问题严重阻碍监狱信息化的发展性罪犯信息种类多、互补性强、关联关系复杂。监狱内部数据集成化程度较低,信息缺少共享机制,难以形成协同效应,系统内部存在信息交叉录入的状况,造成存储冗余,浪费警力。

信息准确性难确保

现有的数据库建设大多是对基础数据的建设,如违法犯罪人员信息系统,必须保证信息的准确性, 并且可以作为司法依据,但目前因人为或失误导致的身份信息有偏差,服刑表现数据不准确的问题,严重损害了执法形象。

信息安全机制不健全

信息安全结构欠成熟,细节描述欠清晰,具体管理中缺乏安全标准,应用缺乏实践经验,不能保证信息的完整存储和安全传输,信息的丢失、泄露、篡改等现象具有发生的可能性。

警戒设备漏洞难避免

警戒设备的配比,很大程度上决定了监狱的安全性,当今门禁系统加了一门又一门,隔离网墙筑了一道又一道,但其毕竟是“物”的防线叫还有诸多技术问题需解决,如基于视频点名、条形码扫描等的定位技术有时造成点名不准确;

高投入的视频监控主要用于事后的取证,不能充分利用大数据分析罪犯通话记录、行为习惯、交往圈、家庭背景等方面的信息,进行必要的监控预警和图像智能化分析,避免脱逃或自杀的可能。

区块链技术的优势

区块链利用数据加密技术将数据区块以链式存储结构的形式存储,每个区块包括区块头和区块身,区块头存储上一个区块的哈希值,作用类似于指针,区块身保存经过验证合法的记录和时间戳等。

区块链利用P2P、共识机制来建立分布式存储节点的信任;

利用智能合约实现交易的自动执行,并且是不受外面干扰的准确运行;

利用“脚本”对数据进行自动操作,实现可编程的数据库。

区块链可能会成为创造信任的一种协议,类似于HTTP协议、TCP/IP协议,利用计算机编程语言来开发去中心化的产品。

数据存储:区块链是去中心化的存储结构,多个节点组成端到端的网络,每个节点的地位都是对等的,个别节点的故障不会影响到整个系统,可解决监狱系统内部共享性差的问题;

区块链中若更改某个区块的数据,则要更改此块后面的所有数据,因此很难实现,区块链本身的机制实现了其不可更改,即使内部工作人员也无法更改,确保监狱系统中数据一旦上链则不可更改;

区块链中接入的节点越多,则安全性越高,当区块后面连接6个区块后,信息几乎不可能被篡改,称此时为稳定状态圆,可实现智慧监狱中数据的可靠存储。

数据溯源:利用时间戳和加密技术的链式存储结构,保证可以追溯每一笔交易。在智慧监狱中实现数据的取证操作。区块链节点利用相互验证保证准确性,若对交易有疑问,可利用回溯交易记录,从而准确判断真实性。如监狱生产车间的产品信息上链保存,产品信息包括配件溯源信息和配件产品检测证书,从而可以检验产品的质量合格性。

数据交易:所有的数据的传送都是基于公钥地址的,而非具体到个人真实身份,在匿名的状态下 完成区块链中的交易,但无法知道其真实身份,匿名特征为举报者提供了安全保护;区块链是创造信任的网络,节点之间按规则操作,实现对整个体系的信任,区块链中数据记录和规则都是透明的,任何人都可用公用接口来查询数据,人为无法对它更改,实现监狱系统中所有数据都上区块链,数据实时传送。

数据安全:区块链可以看作利用加密算法和共 识机制来保证数据不被篡改的一组协议气区块链 利用最长链条来作为工作量的一种证明。只要长链条是诚实矿工创造的,则区块链是安全的,利用时间戳来标识先后次序,避免重复交易。

区块链利用哈希函数保证了数据的所有权,用表1来举例说明。



美国的中本聪提出了泊松分布的概率论模型,计算出新的哈希头刈后,后面要继续追加N个头部(名、入、灯…)后,刈才得到认可,在攻击者未掌握超过51%的算力的情况下是较难实现的。攻击者追上第z块的概率见如下公式所示:P表示 诚实者发现下一节点的概率,0表示攻击者发现下 一节点的概率。

分析可得随着z的增大,其追上的机会越来越小。因此,用数学方法证明了区块链的特殊结构实 现了其不可篡改性。

区块链技术应用研究

区块链分为公有链、联盟链和私有链,由于私 有链主要提供安全、可追溯、不可篡改、自动执行 的运算平台,可以同时避免来自内部和外部对数据的攻击,因此符合承载公平、公正、严明、可靠的 监狱环境。

首先利用区块链保存信息并且保证其不可被更改,

其次实现信息的共享,建设良好的跨平台协作。

利用 IPFS ( Interplanetary File System )加密保存数据,与智能合约相结合,实现信息的保护 和共享,区块链系统与原始系统利用接口对接,实 现对原始信息系统的保护。IPFS包括块交换、哈希表等,保存文件时得到文件指纹,获得文件后,通过文件指纹将文件取出并验证,再将其返回。

3.1可行性分析

在智慧监狱领域,区块链的去中心化,可以将不同数据资源集成于一个区块链中,利用区 块链的分布式存储并结合一定的云存储技术,实现对智慧监狱信息的存储。

利用区块链的共识机制实现信息的匿名性,确保了隐私保护。共识机制是通过投票,对交易确认。区块链的共识机制确保所有诚实矿工的区 块链的前缀相同,同时保证由诚实矿工发布的信息会被其它诚实矿工添加到自己的区块链中,共识机制有拼算力的PoW(Proof of Work),拼财力的 PoS(Proof of Stake)等。区块链运作越高速则共识的代价越昂贵。

通过数据加密哈希算法解决共享后的权限问题,保证数据的不可篡改性,降低了系统的信任风险,将区块链应用于智慧监狱,保存原始数据, 防止人为篡改,杜绝“走关系”篡改罪犯表现基础数据,提高数据的可信度。

区块链的每个节点都保存完整的数据备份,即使某个节点数据丢失也可从其它节点将数据 恢复。将区块链技术应用于数据采集方面,给加入区块链的原始数据添加时间标记,从而证明数据的真实可靠性,是一种较低成本的验证过程。

3.2体系结构

充分利用区块链的特性来设计系统架构如图2 所示,实现将各个监狱的数据资源集合到区块链中,监狱管理局负责区块链的监管,完成数据的上链和信息的共享。



3.2.1罪犯模块

个人基本信息

将区块链用于犯人基本信息记录的保存,即每位犯人拥有一个账本,从而有了关于自己过往的完整数据库,这些数据的掌握者是罪犯本身,充分体 现了智慧监狱的现代化的一个重要的考量标准“人文性”,从人性上避免犯罪心理上的漏洞。

狱中表现数据

罪犯在狱中会进行劳动改造和思想改造,狱中表现数据非常重要,且为罪犯减刑的重要依据,因此必须保证数据的真实性和无法篡改性。基于区块 链特有的数据安全性,能充分利用区块链上的记录来决定是否满足减刑条件。监狱系统视频监控中所获数据,利用“区块链+人工智能”技术分析犯人 的行为轨迹,避免脱逃、自杀的发生。

3.2.2警员模块

警员任职履历

包括警员的出生背景、教育程度、工作经历、 工作绩效、年终考核等,形成多方共识的警员电子 档案,用技术手段避免繁琐的信息整合,减轻了档案管理的工作。

警员巡更管理

记录警员巡逻路线并被保存,准确评定工作时间的表现;记录警员能否走到罪犯中间,了解他们的思想波动,筑造良好的警囚关系叫

3.2.3财务数据管理模块

日常开支

监狱中所有开支数据实时存入区块链,实现了 过程的透明化和信息的准确性,较好实现了财务资金的监管。

劳动收益

由于劳作的特殊性,通过区块链将劳动产品的 追溯认证放到监管中,将整个制造过程存储指纹记录作为数据的存证,由于过程的公开化,避免了极端分子的破坏行为,保证了产品的安全性。

3.2.4信息管理模块

日常的文件、工作安排和会议记录等及时存入区块链,利用区块链信息的实时传送使所有人都可及时获取最新信息。对链中数据设置数据访问权限分级控制,不同级别获得的信息量也不同,通过加 密算法,使数据只能被相关人员阅读,从而强化对隐私内容的保护,提高数据的安全性。

3.2.5监控中心模块

实时监控监舍、生产车间、食堂及监狱周边区 域,出现紧急事端及时报警。对监控中心数据开展 预警判断,将事端抹杀在萌芽中。监控数据及时打 包上链叫。监狱内重要通道对出入人员实时记录,对限制区域增设门禁。对监舍每个一小时清监一次, 人数不齐将会报警。劳作场地也要每隔半小时清点 一次。通过必要的监控措施,减轻警力,提升监狱 的安全性。

3.3智慧监狱中区块链的数据类型

智慧监狱中区块链采用多种数据类型,对不同 的数据做不同数据存储处理。区块链API/SDK将适配接收并格式化这些数据,核心数据和计量证书签 名后上链存证,区块链中存放文件的哈希值后,用户在客户端对文件查找,利用IPFS网络获取目的文件凹。利用区块链的防篡改性避免人为的篡改;利用链上时间戳和哈希值,实时追踪数据变化的全 过程,数据防伪性增强。如图3所示。



3.4采用智能合约虚拟机分层思路

智能合约是可被所有节点运行的区块链的代 码,按照定好的规则管理资产,通过多方协作,清 除错误风险,实现每个用户的透明操作回。链上脚本实现区块链的可编程和智能合约自动执行,随脚本机制的加强,实现了区块链与智能合约的融合发 展,链上脚本为区块链提供了扩展接口,任何人都 可利用脚本实现区块链的应用。

顶层的DSL引擎将DSL翻译成智能合约的开发语言Solidity, Solidity 是静态语言,当其编译完发到网络后,可被以太坊 调用,实现web应用,中层的Solidity语言通过安全分析工具检查后,转换为EVM指令集,EVM使 开发人员使用高级语言来编智能合约,再利用EVM 编译成字节码后部署在区块链中,实现开发智能合约,底层是可插拔的架构,可直接运行在EVM虚 拟机上,也可转换后运行在WASM虚拟机上。

事前使用比较严格的合约和虚拟机,上线前还要经过严格的审核和形式化证明,事后要强 化运行控制和追责。

3.5隐私数据处理

由于区块链是P2P网络,采用中继转发进行通 信,因此比较难推测出信息传播的去向。由于具体 交易中使用用户自己创建的地址,实现匿名操作, 所以与个人具体信息无关,较好实现了数据存储的安全性。区块链中的隐私分为交易隐私和身份隐私, 权限分层设计如图5所示。



数据只能公开部分信息, 对于较敏感的数据利用私钥授权设置隐私数据保护。利用加密算法和智能合约相结合来实现对隐私 数据的保护,如罪犯和警员的个人信息模块的信息 和加密密钥一起存于区块链中,通过数字指纹防止信息被泄露,其当事人可利用智能合约来更改数据访问权限网。有如下访问权限:

掌握权限:对于犯人模块,犯人自身拥有;对 警员模块,警员自己掌管。

虚权限:只能查看到其密文而无法真正访问内 部数据。

结语

认真贯彻党的十九大精神,积极落实“科技强 国,网络强国,数字中国,智慧社会”战略部署, 秉承“没有信息化就没有现代化”的工作思路,注 重在科学化、精细化、智慧化上下功夫,创造“狱 警大脑”聪明过人、“感知触角”无处不在、“智 慧监狱”保佑平安的新气象,推动区块链、云计算、 大数据等先进技术在监狱工作中的深度融合发展, 努力将罪犯改造为守法公民,维护社会的安全稳定。

智慧监狱是未来监狱系统信息化建设的基本方向, 它是融合智慧城市、智慧地球理念于监狱领域的映射,加强对智慧监狱的研究探索,努力引导监狱信 息化建设向更广更深方向发展,为监狱现代化建设 提供了长足动力。

文章探讨了智慧监狱中存在的一 些问题,探索利用区块链技术特征实现数据信息的 不可篡改性和可追溯性,包括如何在区块链上存放 数据并保护数据隐私,探索解决智慧监狱现存问题。

若可对区块链实际应用的成功案例进行二次开发,则可节省成本,还可保证运行的稳定性回。接下来 将积极探索切实有效的区块链应用落地,坚持不忘 初心、牢记使命,积极努力探索监狱信息化建设向 更高层次,更大成效发展。

㈤ 区块链入门(一)——大家一起来记账

小时候,我对许多新奇的事物都很好奇,充满渴望想去了解学习,那时自己的脑回路里经常会出现无数的惊叹号。随着年龄的增长与经历的丰富,这种体验越来越少,也对很多人云亦云的新东西见怪不惊。当“区块链”第一次出现时候,自己完全被吸引住了,之后像小时候一样,本能般地被驱动着去深入学习与了解,发现“区块链”就是一个新世界,是即将到来的未来。

第一次听到“区块链(Blockchain)”三个字,是在李笑来老师的《通往财富自由之路》的专栏上,之后多次在专栏文章里看到这个词汇的出现。出于好奇,关注并阅读了了老猫的公众账号《猫说》上的文章,逐渐对区块链有了从0到1的认识。block-块,chain-链,blockchain-把一个一个的块连成链,想象一下DNA在面前无限延伸的样子.....

这段是网络上面对区块链的一个解释,换个通俗点的说法,区块链是一种公开、去中心化、去信任的,共同维护的账务系统。

先来看看传统的中心化的银行商业模式。我们在做交易的时候,为什么需要银行、阿里巴巴、腾讯等第三方中心化公司?因为人与人之间是不信任的。A今天借给B100块,明天B不承认这笔借款,A怎么办?银行帮忙解决了这个问题,每个人在银行里创建一个实名认证的户头,借助这个中心化公司,A借给银行100元(存),B从银行拿出100元(取/借),那么银行负责对这笔交易进行记录,A的账户就会多100元,而B则少100元。这样的依靠第三方中心化公司记账的方式在我们生活中随处可见:网购我们需要阿里巴巴的淘宝城和京东;贷款我们需要找靠谱的小贷公司;发行新书要通过某个出版社……归根结底,是因为人与人之间不信任,或者说要维持信任的风险太大,成本太高,所以我们需要这样的中心化的强大的第三方公司来给交易进行信任背书,让它们来承担这些风险,当然,它们也赚足了我们的钱。可是倚靠第三方中心化的商业模式给我们带来的却是低效的服务、繁琐的程序以及价值的分流,例如银行排队办理业务,小贷公司的放贷流程,淘宝、京东对商家的收租,出版社对作家稿费的分羹等等。这就是目前我们所处的中心化的,第三方信任化的世界。

而区块链世界,则是一种新的世界,这里不需要第三方,所有的交易信息都是公开的,并且所有人都参与记账!比特币作为世界上第一个被实证可行的区块链应用,就是运用自动记账且账务公开,信息不可篡改,随时可查询的技术颠覆了传统金融模式,绕开了第三方中心化,买卖方直接进行交易。这样的交易模式一定是高效的,低成本的,并且公开化的。试想一下如果区块链技术未来普及,当你要转账一笔大数额的金钱给国外的朋友,略过冗长的环节,瞬间到账;如果你写了一本书发表,不用担心被人盗版,也不用被出版社赚取属于你的稿费;人与人之间直接搭建点对点的互助保险平台,保险公司将变成咨询公司等等。(事实上,比特币与Press.one正在实现这样的颠覆)

当下互联网蓬勃发展,外勤我们有滴滴打车或共享单车,叫餐我们选择饿了么,餐厅就餐有大众点评,到处都是微信、支付宝的便捷支付。我们在互联网上进行支付的时候,需要倚靠一个买卖双方都信任的第三方平台公司来替我们完成这笔交易。这些第三方公司拥有大量的交易数据以及交易双方的信息,那么,如果发生黑客入侵造成信息丢失,我们将为我们的“信任风险”承担后果;且不提在审核、清算交易数据带来的拖延不便,以及管理这样庞大的数据所要耗费的巨大成本。

那么区块链技术是怎么实现的呢?打个比方,假如有一支军队要去抢占敌方的堡垒,而每一个士兵都带有一个特殊的头盔,头盔有一个红色按钮,每占领一个堡垒,本军总部给予勋章奖励。首先,有一位士兵A率先占领了第一个堡垒1,他通过头盔对其他战友宣布自己已经占领堡垒1,这时候头盔就会把堡垒1的坐标信息记录下来,连同A的喊话一起传递给其他所有士兵,其他人通过头盔听到A的喊话并按下后按下红色按钮表示已经同步记录了这条信息。那么所有人都知道堡垒1已经被A占领,并且A获得勋章奖励。于是其他人就会立马去攻占其他的堡垒,并且按同样的方式广播自己的战功。这样,这场战役中不同堡垒被不同士兵攻占的信息就全部保存在每一个人的头盔中。在这里,头盔就是这个公共账本(严格来说是头盔的程序),所有人都参与记账;每个攻占信息都构成一个区块,所有的信息按照一定顺序排列就构成了一个区块链;参与者除了记账(按下红色按钮),还要争先恐后去抢夺新数据的打包权(攻占堡垒)。

那么来看看这种共同记账方式的优势。1,去中心化。账本是大家共同记录维护的,到底是谁首先记录无所谓,因为有激励(勋章),就会有人去做,不需要第三方介入(不需要将军或是作战部的指挥,减少军队开支与指挥者牺牲的风险)。2,数据不可篡改。已经记账的数据如果要修改,必须修改超过51%的节点信息才能成功。试想一下,这个军队如果有百万人(实际上区块链节点数量远远大于这个数),要修改超过一半军队的头盔,这是个几乎不可能完成的任务。3,信息公开透明。所有人都可以在自己的账本中查询到这条交易信息(所有堡垒攻占信息都已记录在所有人头盔里)。

这是我开始迈向写作的第一篇文章,上一次写这么多字应该是在高考场上了。第一篇文章写的是从来没接触过的新的领域,文字有点混乱平庸,也不知道自己做的类比正确与否,不过终究开始去做了。写作确实是人人都应该具备的技能,并且是可刻意练习而提高的技能,督促自己维持下去。

㈥ 区块链钱包安全吗

可以说非常的不安全,区块链钱包相关的技术在国内已经失去了原本的技术意味。现在已经沦为圈钱的一种手段。所以对于这个方面的话,一定要非常的警惕,反正我个人来说不相信。

㈦ 区块链如何提高安全性和数据共享

针对现有区块链技术的安全特性和缺点,需要围绕物理、数据、应用系统、加密、风控等方面构建安全体系,整体提升区块链系统的安全性能。
1、物理安全
运行区块链系统的网络和主机应处于受保护的环境,其保护措施根据具体业务的监管要求不同,可采用不限于VPN专网、防火墙、物理隔离等方法,对物理网络和主机进行保护。
2、数据安全
区块链的节点和节点之间的数据交换,原则上不应明文传输,例如可采用非对称加密协商密钥,用对称加密算法进行数据的加密和解密。数据提供方也应严格评估数据的敏感程度、安全级别,决定数据是否发送到区块链,是否进行数据脱敏,并采用严格的访问权限控制措施。
3、应用系统安全
应用系统的安全需要从身份认证、权限体系、交易规则、防欺诈策
略等方面着手,参与应用运行的相关人员、交易节点、交易数据应事前受控、事后可审计。以金融区块链为例,可采用容错能力更强、抗欺诈性和性能更高的共识算法,避免部分节点联合造假。
4、密钥安全
对区块链节点之间的通信数据加密,以及对区块链节点上存储数据加密的密钥,不应明文存在同一个节点上,应通过加密机将私钥妥善保存。在密钥遗失或泄漏时,系统可识别原密钥的相关记录,如帐号控制、通信加密、数据存储加密等,并实施响应措施使原密钥失效。密钥还应进行严格的生命周期管理,不应为永久有效,到达一定的时间周期后需进行更换。
5、风控机制
对系统的网络层、主机操作、应用系统的数据访问、交易频度等维度,应有周密的检测措施,对任何可疑的操作,应进行告警、记录、核查,如发现非法操作,应进行损失评估,在技术和业务层面进行补救,加固安全措施,并追查非法操作的来源,杜绝再次攻击。

文章来源:中国区块链技术和应用发展白皮书

阅读全文

与区块链节点章相关的资料

热点内容
挖矿一般用哪些卡 浏览:888
比特币偷挖 浏览:390
btc前十的交易平台 浏览:579
r9270挖矿驱动 浏览:139
以太坊中的uncle 浏览:746
冒险与挖矿魔吕属性 浏览:44
半仙和多米和暗墨一起去挖矿 浏览:598
奶块暮色森林挖矿210层 浏览:398
砍树挖矿扩建种菜游戏叫什么 浏览:576
蚂蚁矿机期货如何交易 浏览:182
比特币就一垃圾 浏览:824
以太坊没有到账 浏览:259
虚拟货币赚钱吗6 浏览:373
brooke区块链 浏览:752
btc上次减半涨了多少 浏览:596
比特王区块链AGE7是真的吗 浏览:61
genesis挖矿官网 浏览:958
莆田创世纪比特币 浏览:854
比特币矿机还能赚钱不 浏览:28
星露谷物语挖矿雾 浏览:621