導航:首頁 > 礦機挖礦 > 共識演算法和挖礦的區別

共識演算法和挖礦的區別

發布時間:2023-06-01 05:30:05

區塊鏈 --- 共識演算法

PoW演算法是一種防止分布式服務資源被濫用、拒絕服務攻擊的機制。它要求節點進行適量消耗時間和資源的復雜運算,並且其運算結果能被其他節點快速驗算,以耗用時間、能源做擔保,以確保服務與資源被真正的需求所使用。

PoW演算法中最基本的技術原理是使用哈希演算法。假設求哈希值Hash(r),若原始數據為r(raw),則運算結果為R(Result)。

R = Hash(r)

哈希函數Hash()的特性是,對於任意輸入值r,得出結果R,並且無法從R反推回r。當輸入的原始數據r變動1比特時,其結果R值完全改變。在比特幣的PoW演算法中,引入演算法難度d和隨機值n,得到以下公式:

Rd = Hash(r+n)

該公式要求在填入隨機值n的情況下,計算結果Rd的前d位元組必須為0。由於哈希函數結果的未知性,每個礦工都要做大量運算之後,才能得出正確結果,而算出結果廣播給全網之後,其他節點只需要進行一次哈希運算即可校驗。PoW演算法就是採用這種方式讓計算消耗資源,而校驗僅需一次。

 

PoS演算法要求節點驗證者必須質押一定的資金才有挖礦打包資格,並且區域鏈系統在選定打包節點時使用隨機的方式,當節點質押的資金越多時,其被選定打包區塊的概率越大。

POS模式下,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000。這個時候,如果你驗證了一個POS區塊,你的幣齡就會被清空為0,同時從區塊中獲得相對應的數字貨幣利息。

節點通過PoS演算法出塊的過程如下:普通的節點要成為出塊節點,首先要進行資產的質押,當輪到自己出塊時,打包區塊,然後向全網廣播,其他驗證節點將會校驗區塊的合法性。

 

DPoS演算法和PoS演算法相似,也採用股份和權益質押。

但不同的是,DPoS演算法採用委託質押的方式,類似於用全民選舉代表的方式選出N個超級節點記賬出塊。

選民把自己的選票投給某個節點,如果某個節點當選記賬節點,那麼該記賬節點往往在獲取出塊獎勵後,可以採用任意方式來回報自己的選民。

這N個記賬節點將輪流出塊,並且節點之間相互監督,如果其作惡,那麼會被扣除質押金。

通過信任少量的誠信節點,可以去除區塊簽名過程中不必要的步驟,提高了交易的速度。
 

拜占庭問題:

拜占庭是古代東羅馬帝國的首都,為了防禦在每塊封地都駐扎一支由單個將軍帶領的軍隊,將軍之間只能靠信差傳遞消息。在戰爭時,所有將軍必須達成共識,決定是否共同開戰。

但是,在軍隊內可能有叛徒,這些人將影響將軍們達成共識。拜占庭將軍問題是指在已知有將軍是叛徒的情況下,剩餘的將軍如何達成一致決策的問題。

BFT:

BFT即拜占庭容錯,拜占庭容錯技術是一類分布式計算領域的容錯技術。拜占庭假設是對現實世界的模型化,由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊等原因,計算機和網路可能出現不可預料的行為。拜占庭容錯技術被設計用來處理這些異常行為,並滿足所要解決的問題的規范要求。

拜占庭容錯系統

發生故障的節點被稱為 拜占庭節點 ,而正常的節點即為 非拜占庭節點

假設分布式系統擁有n台節點,並假設整個系統拜占庭節點不超過m台(n ≥ 3m + 1),拜占庭容錯系統需要滿足如下兩個條件:

另外,拜占庭容錯系統需要達成如下兩個指標:

PBFT即實用拜占庭容錯演算法,解決了原始拜占庭容錯演算法效率不高的問題,演算法的時間復雜度是O(n^2),使得在實際系統應用中可以解決拜占庭容錯問題
 

PBFT是一種狀態機副本復制演算法,所有的副本在一個視圖(view)輪換的過程中操作,主節點通過視圖編號以及節點數集合來確定,即:主節點 p = v mod |R|。v:視圖編號,|R|節點個數,p:主節點編號。

PBFT演算法的共識過程如下:客戶端(Client)發起消息請求(request),並廣播轉發至每一個副本節點(Replica),由其中一個主節點(Leader)發起提案消息pre-prepare,並廣播。其他節點獲取原始消息,在校驗完成後發送prepare消息。每個節點收到2f+1個prepare消息,即認為已經准備完畢,並發送commit消息。當節點收到2f+1個commit消息,客戶端收到f+1個相同的reply消息時,說明客戶端發起的請求已經達成全網共識。

具體流程如下

客戶端c向主節點p發送<REQUEST, o, t, c>請求。o: 請求的具體操作,t: 請求時客戶端追加的時間戳,c:客戶端標識。REQUEST: 包含消息內容m,以及消息摘要d(m)。客戶端對請求進行簽名。

主節點收到客戶端的請求,需要進行以下交驗:

a. 客戶端請求消息簽名是否正確。

非法請求丟棄。正確請求,分配一個編號n,編號n主要用於對客戶端的請求進行排序。然後廣播一條<<PRE-PREPARE, v, n, d>, m>消息給其他副本節點。v:視圖編號,d客戶端消息摘要,m消息內容。<PRE-PREPARE, v, n, d>進行主節點簽名。n是要在某一個范圍區間內的[h, H],具體原因參見 垃圾回收 章節。

副本節點i收到主節點的PRE-PREPARE消息,需要進行以下交驗:

a. 主節點PRE-PREPARE消息簽名是否正確。

b. 當前副本節點是否已經收到了一條在同一v下並且編號也是n,但是簽名不同的PRE-PREPARE信息。

c. d與m的摘要是否一致。

d. n是否在區間[h, H]內。

非法請求丟棄。正確請求,副本節點i向其他節點包括主節點發送一條<PREPARE, v, n, d, i>消息, v, n, d, m與上述PRE-PREPARE消息內容相同,i是當前副本節點編號。<PREPARE, v, n, d, i>進行副本節點i的簽名。記錄PRE-PREPARE和PREPARE消息到log中,用於View Change過程中恢復未完成的請求操作。

主節點和副本節點收到PREPARE消息,需要進行以下交驗:

a. 副本節點PREPARE消息簽名是否正確。

b. 當前副本節點是否已經收到了同一視圖v下的n。

c. n是否在區間[h, H]內。

d. d是否和當前已收到PRE-PPREPARE中的d相同

非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的PREPARE消息,則向其他節點包括主節點發送一條<COMMIT, v, n, d, i>消息,v, n, d, i與上述PREPARE消息內容相同。<COMMIT, v, n, d, i>進行副本節點i的簽名。記錄COMMIT消息到日誌中,用於View Change過程中恢復未完成的請求操作。記錄其他副本節點發送的PREPARE消息到log中。

主節點和副本節點收到COMMIT消息,需要進行以下交驗:

a. 副本節點COMMIT消息簽名是否正確。

b. 當前副本節點是否已經收到了同一視圖v下的n。

c. d與m的摘要是否一致。

d. n是否在區間[h, H]內。

非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的COMMIT消息,說明當前網路中的大部分節點已經達成共識,運行客戶端的請求操作o,並返回<REPLY, v, t, c, i, r>給客戶端,r:是請求操作結果,客戶端如果收到f+1個相同的REPLY消息,說明客戶端發起的請求已經達成全網共識,否則客戶端需要判斷是否重新發送請求給主節點。記錄其他副本節點發送的COMMIT消息到log中。
 

如果主節點作惡,它可能會給不同的請求編上相同的序號,或者不去分配序號,或者讓相鄰的序號不連續。備份節點應當有職責來主動檢查這些序號的合法性。

如果主節點掉線或者作惡不廣播客戶端的請求,客戶端設置超時機制,超時的話,向所有副本節點廣播請求消息。副本節點檢測出主節點作惡或者下線,發起View Change協議。

View Change協議

副本節點向其他節點廣播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的編號, C 2f+1驗證過的CheckPoint消息集合, P 是當前副本節點未完成的請求的PRE-PREPARE和PREPARE消息集合。

當主節點p = v + 1 mod |R|收到 2f 個有效的VIEW-CHANGE消息後,向其他節點廣播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主節點重新發起的未經完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的選取規則:

副本節點收到主節點的NEW-VIEW消息,驗證有效性,有效的話,進入v+1狀態,並且開始 O 中的PRE-PREPARE消息處理流程。
 

在上述演算法流程中,為了確保在View Change的過程中,能夠恢復先前的請求,每一個副本節點都記錄一些消息到本地的log中,當執行請求後副本節點需要把之前該請求的記錄消息清除掉。

最簡單的做法是在Reply消息後,再執行一次當前狀態的共識同步,這樣做的成本比較高,因此可以在執行完多條請求K(例如:100條)後執行一次狀態同步。這個狀態同步消息就是CheckPoint消息。

副本節點i發送<CheckPoint, n, d, i>給其他節點,n是當前節點所保留的最後一個視圖請求編號,d是對當前狀態的一個摘要,該CheckPoint消息記錄到log中。如果副本節點i收到了2f+1個驗證過的CheckPoint消息,則清除先前日誌中的消息,並以n作為當前一個stable checkpoint。

這是理想情況,實際上當副本節點i向其他節點發出CheckPoint消息後,其他節點還沒有完成K條請求,所以不會立即對i的請求作出響應,它還會按照自己的節奏,向前行進,但此時發出的CheckPoint並未形成stable。

為了防止i的處理請求過快,設置一個上文提到的 高低水位區間[h, H] 來解決這個問題。低水位h等於上一個stable checkpoint的編號,高水位H = h + L,其中L是我們指定的數值,等於checkpoint周期處理請求數K的整數倍,可以設置為L = 2K。當副本節點i處理請求超過高水位H時,此時就會停止腳步,等待stable checkpoint發生變化,再繼續前進。
 

在區塊鏈場景中,一般適合於對強一致性有要求的私有鏈和聯盟鏈場景。例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
 

 

Raft基於領導者驅動的共識模型,其中將選舉一位傑出的領導者(Leader),而該Leader將完全負責管理集群,Leader負責管理Raft集群的所有節點之間的復制日誌。
 

下圖中,將在啟動過程中選擇集群的Leader(S1),並為來自客戶端的所有命令/請求提供服務。 Raft集群中的所有節點都維護一個分布式日誌(復制日誌)以存儲和提交由客戶端發出的命令(日誌條目)。 Leader接受來自客戶端的日誌條目,並在Raft集群中的所有關注者(S2,S3,S4,S5)之間復制它們。

在Raft集群中,需要滿足最少數量的節點才能提供預期的級別共識保證, 這也稱為法定人數。 在Raft集群中執行操作所需的最少投票數為 (N / 2 +1) ,其中N是組中成員總數,即 投票至少超過一半 ,這也就是為什麼集群節點通常為奇數的原因。 因此,在上面的示例中,我們至少需要3個節點才能具有共識保證。

如果法定仲裁節點由於任何原因不可用,也就是投票沒有超過半數,則此次協商沒有達成一致,並且無法提交新日誌。

 

數據存儲:Tidb/TiKV

日誌:阿里巴巴的 DLedger

服務發現:Consul& etcd

集群調度:HashiCorp Nomad
 

只能容納故障節點(CFT),不容納作惡節點

順序投票,只能串列apply,因此高並發場景下性能差
 

Raft通過解決圍繞Leader選舉的三個主要子問題,管理分布式日誌和演算法的安全性功能來解決分布式共識問題。

當我們啟動一個新的Raft集群或某個領導者不可用時,將通過集群中所有成員節點之間協商來選舉一個新的領導者。 因此,在給定的實例中,Raft集群的節點可以處於以下任何狀態: 追隨者(Follower),候選人(Candidate)或領導者(Leader)。

系統剛開始啟動的時候,所有節點都是follower,在一段時間內如果它們沒有收到Leader的心跳信號,follower就會轉化為Candidate;

如果某個Candidate節點收到大多數節點的票,則這個Candidate就可以轉化為Leader,其餘的Candidate節點都會回到Follower狀態;

一旦一個Leader發現系統中存在一個Leader節點比自己擁有更高的任期(Term),它就會轉換為Follower。

Raft使用基於心跳的RPC機制來檢測何時開始新的選舉。 在正常期間, Leader 會定期向所有可用的 Follower 發送心跳消息(實際中可能把日誌和心跳一起發過去)。 因此,其他節點以 Follower 狀態啟動,只要它從當前 Leader 那裡收到周期性的心跳,就一直保持在 Follower 狀態。

Follower 達到其超時時間時,它將通過以下方式啟動選舉程序:

根據 Candidate 從集群中其他節點收到的響應,可以得出選舉的三個結果。

共識演算法的實現一般是基於復制狀態機(Replicated state machines),何為 復制狀態機

簡單來說: 相同的初識狀態 + 相同的輸入 = 相同的結束狀態 。不同節點要以相同且確定性的函數來處理輸入,而不要引入一下不確定的值,比如本地時間等。使用replicated log是一個很不錯的注意,log具有持久化、保序的特點,是大多數分布式系統的基石。

有了Leader之後,客戶端所有並發的請求可以在Leader這邊形成一個有序的日誌(狀態)序列,以此來表示這些請求的先後處理順序。Leader然後將自己的日誌序列發送Follower,保持整個系統的全局一致性。注意並不是強一致性,而是 最終一致性

日誌由有序編號(log index)的日誌條目組成。每個日誌條目包含它被創建時的任期號(term),和日誌中包含的數據組成,日誌包含的數據可以為任何類型,從簡單類型到區塊鏈的區塊。每個日誌條目可以用[ term, index, data]序列對表示,其中term表示任期, index表示索引號,data表示日誌數據。

Leader 嘗試在集群中的大多數節點上執行復制命令。 如果復製成功,則將命令提交給集群,並將響應發送回客戶端。類似兩階段提交(2PC),不過與2PC的區別在於,leader只需要超過一半節點同意(處於工作狀態)即可。

leader follower 都可能crash,那麼 follower 維護的日誌與 leader 相比可能出現以下情況

當出現了leader與follower不一致的情況,leader強制follower復制自己的log, Leader會從後往前試 ,每次AppendEntries失敗後嘗試前一個日誌條目(遞減nextIndex值), 直到成功找到每個Follower的日誌一致位置點(基於上述的兩條保證),然後向後逐條覆蓋Followers在該位置之後的條目 。所以丟失的或者多出來的條目可能會持續多個任期。
 

要求候選人的日誌至少與其他節點一樣最新。如果不是,則跟隨者節點將不投票給候選者。

意味著每個提交的條目都必須存在於這些伺服器中的至少一個中。如果候選人的日誌至少與該多數日誌中的其他日誌一樣最新,則它將保存所有已提交的條目,避免了日誌回滾事件的發生。

即任一任期內最多一個leader被選出。這一點非常重要,在一個復制集中任何時刻只能有一個leader。系統中同時有多餘一個leader,被稱之為腦裂(brain split),這是非常嚴重的問題,會導致數據的覆蓋丟失。在raft中,兩點保證了這個屬性:

因此, 某一任期內一定只有一個leader
 

當集群中節點的狀態發生變化(集群配置發生變化)時,系統容易受到系統故障。 因此,為防止這種情況,Raft使用了一種稱為兩階段的方法來更改集群成員身份。 因此,在這種方法中,集群在實現新的成員身份配置之前首先更改為中間狀態(稱為聯合共識)。 聯合共識使系統即使在配置之間進行轉換時也可用於響應客戶端請求,它的主要目的是提升分布式系統的可用性。

㈡ 比特幣的挖礦到底挖的是什麼

比特幣最吸引人的是挖礦。為什麼采礦如此迷人?因為挖礦可以得到比特幣。在寫這篇文章的時候,比特幣的價格是3900美元。如果能挖到一個區塊,可以獲得48750美元的開採收入和大約6000美元的交易費收入。這難道不令人著迷嗎?

那麼到底什麼是采礦呢?礦工如何通過挖礦獲得比特幣?這需要從比特幣區塊鏈系統採用的PoW(工作量證明)共識機制說起。

有一個村子,很多事情需要一起決定。比如有一天村長需要所有村民一起決定今天中午在村食堂包餃子還是卷面條。通常我們能想到的方式是投票——每個村民一票,少數服從多數。但是有些村民不願意在食堂吃飯,可能會把自己的票讓給別人,可能會導致不公平。大豎悔畢部分在食堂吃飯的人,可能都實現不了自己的願望。

於是村長換了一種方式。10點50分,他用喊話器向全體村民廣播:「中午我們在食堂選做餃子還是面條。想去食堂吃飯的,就推食堂門口的巨石。11點整,石頭會推到大門東邊,他們中午吃餃子;推余芹到大門西邊,中午吃面。」

於是想在食堂吃飯的人跑去推石頭。貢獻多的人最後實現了願望,貢獻少的人心甘情願,因為村裡一直就是這樣的規矩。

這個故事講述了一種在民眾中達成共識的方式,我們可以稱之為「工作量證明機制」。用努力的多少來證明自己的選擇意願。

在本系列的第一篇文章中,我們討論了可以保持每個人的賬簿一致的區塊鏈系統。這種保持所有節點數據一致的機制稱為共識機制。不同的共識演算法可以達到不同性能的共識效果,最終目的是保持數據一致。

注意第一個,在任何塊中,第一個都沒有轉出地址,也就是所謂的CoinBase (mining transaction)。沒有人付給礦工這些錢,但是礦工只是寫著他們得到了12.5個比特幣。所有節點都同意礦工這樣寫,所以礦工獲得采礦收入。

不同礦工填塊的時候,數據肯定是不一樣的,因為每個礦工的第一條規則肯定是不一樣的,礦工只會把開采所得轉到自己的地址。所以礦工邁克爾的CoinBase是「邁克爾獲得了12.5個比特幣」,礦工南希的CoinBase是「南希獲得了12.5個比特幣」。

每個礦工都填好了自己收集的交易和應該得到的收入。那麼,誰的記錄會得到大家的認可呢?比特幣使用工作量證明機制,讓礦工相互競爭來解決一個數學問題。誰先解決,誰就得到大家的認可。就像開篇故事中講述的那個村莊一樣,每個礦工都在用力推著巨石。一旦石頭壓住了他的賬戶頁面,他喊道:「我的工作量證明是成功的。快來看!」所有的礦工都來了,抄下那一頁賬目,貼在賬本後面,然後開始新的記賬流程。周而復始,生生不息,賬本一頁頁的增加,賬本越來越厚。

當中本聰決定採用工作量認證機制時,出發點是為了避免系統受到攻擊。「中本聰」認為,如果攻擊者想通過搞亂賬本來攻擊,他需要足夠的計算能力。換句話說,他比大多數推石頭的人都厲害。這樣他要付出巨大的成本,但回報不足以抵消成本,所以攻擊者沒有經濟動機去攻擊比特幣系統。

但是,現在由於比特幣的價格越來越高,推石頭的人已經不滿足於自己去推了,而是把家裡的大騾子大馬都派上去幹活了。在「中本聰」最初的設計里,一個CPU一票,用算力來決定哪個礦工記的賬成為最終的賬目。隨著比特幣價格的增高,開始出現了GPU挖礦,後來人們又不滿足於GPU的速度,開始製造專用晶元挖礦。專用晶元在計算比特幣問題的能力上是普通CPU的數萬倍,因此現在比特幣已經不是「一個CPU一票」了,這也背離了當初「中本聰」的設計,比特幣網路已經基本上被幾大礦池所壟斷,背離了去中心化貨幣這一初衷。

雷鋒網特約稿件,未經授權禁止轉載。詳情見轉載須知。

相關問答:顯卡挖礦是什麼意思?為什麼顯卡價格和挖礦有關?

作為一個曾經「夢想一夜暴富,最後血本無歸」的「老礦工」,來回答這個問題,本文盡量用通俗的語言來描述一下挖礦、顯卡挖礦和顯卡價格的一些相關問題。

「挖礦」是什麼意思?

簡單來講,挖礦就是產生數字貨幣的意思,數字貨幣有很多種,包括我們聽到過比特幣、萊特幣以太坊、幣安幣、狗狗幣等。

這里,我們以比特幣為例,來大致了解一下,比特幣就是一種P2P形式的數字貨幣,P2P的去中心化特性與演算法本身可以確保無法通過大量製造比特幣來人為操控幣值。所以,比特幣其總數量有限,該貨幣系統曾在4年內只有不超過1050萬個,之後的總數量將被永久限制在2100萬個。

但是,與大多數貨幣不前手同,比特幣不依靠特定貨幣機構發行,它依據特定演算法,通過大量的計算機數據計算而產生,每隔一定時間就會通過「挖礦」產生一部分比特幣。

「顯卡挖礦」是什麼意思?

我們知道了「挖礦」的含義,簡單地說,不就是讓電腦進行大量計算嗎?這不正是電腦的長處嗎?

那麼,為什麼「挖礦」總要拿顯卡去挖,更為厲害的CPU,它不能挖嗎?畢竟,顯卡一般都是用來打游戲的,怎麼會和數字貨幣扯上關系呢?

這里就要提到一個詞語:算力。

我們要知道,挖礦最重要的就是電腦硬體的算力大小,相較於CPU的復雜運算,顯卡進行的則是通用計算,往往都會堆疊上千甚至幾千個流處理器。然而正好,挖礦只需要通用計算就能搞定,復雜運算卻完全利用不上,所以,顯卡的另外一個用武之地就是挖礦!

相當於什麼意思呢?舉個例子簡單的例子:我們需要在大量的白紙上面寫上一個數字1,我們安排10個老師和1000個小學生來做這件事,在相同時間內,這1000個小學生的完成量肯定要比10個老師完成的更多,雖然老師能力更強,但是在處理這種簡單事情上,架不住小學生人多啊。

其實,早期的「挖礦」,確實是用CPU來進行的,後來,由於挖礦的難度越來越大,CPU的通用計算你能力已經並無法滿足挖礦的需求了,所以就用到顯卡來挖礦。反而,對於我們平時注重的電腦性能提升的重點硬體CPU和內存要求並不高,有的時候僅僅需要能夠保證運行操系統和相關軟體就行。我當初自己配置的小型礦機,使用的CPU和CPU散熱都是二手貨,內存僅為4GB,使用的硬碟僅為60G,然而搭配的確是6塊顯卡和可以插6塊顯卡的主板。

為什麼顯卡價格和挖礦有關?

關於顯卡的價格與挖礦的關系,一般可以從新顯卡和二手顯卡市場的價格來分別說一下。

第一,新顯卡方面。

其實,新顯卡的價格上漲,主要是在前兩年,最近顯卡價格正在逐漸回落。而當初,顯卡價格上漲跟當時比特幣的市場行情有很大關系。當時的比特幣價格可謂是達到了瘋狂狀態,所以催生了大量的專業「礦工」和「挖礦公司」,當然,也包括大量的像我一樣的「挖礦散戶」。

當時,有媒體報道,有部分地區的網吧竟然關門歇業,戰而進行專業挖礦,其火熱程度可想而知。

後來,由於數字貨幣價格回落,並且相關監管部門對數字貨幣及挖礦項目的規范化管理,行業正逐步回歸理性和正規,加上挖礦行業與環境保護相悖,所以大量的礦工轉行、礦機關閉,同時,相關企業也研發出了專用的挖礦機器,造成顯卡需求持續下降,顯卡價格隨之下降。

大量的市場需求,導致顯卡的價格一漲再漲;市場需求降低,顯卡價格也逐步回落,這與市場的供需關系和價格浮動是相匹配的。

第二,二手顯卡方面。

挖礦用的顯卡,我們俗稱礦卡。隨著礦機對顯卡的大量需求,二手顯卡也被很多礦工所青睞;但又隨著大量礦機關閉,大量礦卡肯定流入二手市場,而很多良心人士,是不建議普通用戶購買二手礦卡的。所以,顯卡二手市場的的價格也就隨著挖礦行業的行情變化而變化。

舉個真實的例子,AMD曾推出了一款顯卡叫Radeon Ⅶ,於2019年2月發布,7月份停產,發布時價格僅為5000多。但是,在停產一年半過後,其二手價格竟高達8000元左右,而這僅僅是由於這塊顯卡各方面的性能數據更加有利於挖礦。

總體而言,顯卡挖礦就是一種利用顯卡本身的優勢來進行數字貨幣的生產,而挖礦行業的興衰,就直接影響了顯卡價格的波動。

在此,奉勸還未進入而又想進入「礦圈」的普通玩家,放棄吧,因為有可能,下一個「血本無歸」的,就是你!

㈢ 什麼是poc容量證明共識演算法

PoC是Proof of Capacity的縮寫,翻譯成漢語就是容量證明。顧名思義,就是通過存儲容量的多少來決定區塊生成權的演算法。PoC共識機制用更加通俗的語言表達就是用CPU,GPU預算出一堆彩票號碼,然後填滿硬碟,挖礦就是尋找中獎的彩票號碼。
目前大部分數字貨幣挖礦採用的是PoW(工作量證明)。僅有Burst、BHD、Newbi使用PoC共識機制。

㈣ 共識演算法(分布式下的一致性演算法)

共識演算法(分布式下的一致性演算法)

業務場景:

達到的效果:可以保證在過半節點正常的情況下,所有的寫入操作不會丟失。

Zab協議並不保證強一致性,也不是弱一致性,而是在一定限度內的強一致性。

缺點:

缺點:

區塊鏈1.0時代:比特幣,作用就是去中心化的貨幣,無國界的貨幣,並且可以匿名性的洗錢
區塊鏈2.0時代:代表以太坊,引入了智能合約的概念,發揮其 去中心化和不可篡改的特性,可以實現類似於 追溯、拍賣、投票等業務場景。

區塊鏈技術的實用價值:
無國界虛擬貨幣:比如比特幣

模擬一個拍賣(盲拍)的業務場景(發布一個智能合約):
https://solidity.readthedocs.io/en/latest/solidity-by-example.html#simple-open-auction

普通拍賣可能存在的問題:

商家A對一件商品公開自己要拍賣,智能合約在規定的時間會開始接收競拍(參與競拍的人需要支付保證金(以太幣)),在競拍結束之後,價格最高的人會完成支付,其它的買家的保證金會全額退回。
然後成功競拍者可以線下去找賣家,證明自己的身份,然後獲得競拍品

優點:

工作量證明( PoW )通過計算一個數值( nonce ),使得拼揍上交易數據後內容的 Hash 值滿足規定的上限。在節點成功找到滿足的Hash值之後,會馬上對全網進行廣播打包區塊,網路的節點收到廣播打包區塊,會立刻對其進行驗證

舉個例子,給定的一個基本的字元串」Hello, world!」,我們給出的工作量要求是,可以在這個字元串後面添加一個叫做nonce的整數值,對變更後(添加nonce)的字元串進行SHA256哈希運算,
如果得到的哈希結果(以16進制的形式表示)是以」0000」開頭的,則驗證通過。為了達到這個工作量證明的目標。我們需要不停的遞增nonce值,對得到的新字元串進行SHA256哈希運算。
按照這個規則,我們需要經過4251次計算才能找到恰好前4位為0的哈希散列。計算完之後,然後廣播到臨近的節點,臨近的節點會先驗算交易是否合法(金額是否異常),再驗證hash值是否滿足要求,都滿足的話,就會把這個數據塊添加到自己的賬本中。

優點:

缺點:

計算難度值會因為 股東持有的 幣齡而降低,為挖礦無形之中提升了壁壘,股東更容易算出結果值(難度更低),從而避免過度的算力競爭,節省電力,提升系統的穩定性。
因為從人性的角度,股東更不願意讓不安全的現象發生(比如攻擊主鏈),因為會造成信用降低,從而自己的礦幣貶值。讓股東擁有更多的記賬權,讓主鏈更安全。

擴展可以參考我之前寫過的zab專欄博客
https://www.jianshu.com/nb/32551354

㈤ 常見的共識演算法介紹

在非同步系統中,需要主機之間進行狀態復制,以保證每個主機達成一致的狀態共識。而在非同步系統中,主機之間可能出現故障,因此需要在默認不可靠的非同步網路中定義容錯協議,以確保各個主機達到安全可靠的狀態共識。

共識演算法其實就是一組規則,設置一組條件,篩選出具有代表性的節點。在區塊鏈系統中,存在很多這樣的篩選方案,如在公有鏈中的POW、Pos、DPOS等,而在不需要貨幣體系的許可鏈或私有鏈中,絕對信任的節點、高效的需求是公有鏈共識演算法不能提供的,對於這樣的區塊鏈,傳統的一致性共識演算法成為首選,如PBFT、PAXOS、RAFT等。

目錄

一、BFT(拜占庭容錯技術)

二、PBFT(實用拜占庭容錯演算法)

三、PAXOS

四、Raft

五、POW(工作量證明)

六、POS(權益證明)

七、DPOS(委任權益證明)

八、Ripple

拜占庭弄錯技術是一類分布式計算領域的容錯技術。拜占庭假設是由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊的原因,計算機和網路出現不可預測的行為。拜占庭容錯用來處理這種異常行為,並滿足所要解決問題的規范。

拜占庭容錯系統是一個擁有n台節點的系統,整個系統對於每一個請求,滿足以下條件:

1)所有非拜占庭節點使用相同的輸入信息,產生同樣的結果;

2)如果輸入的信息正確,那麼所有非拜占庭節點必須接收這個信息,並計算相應的結果。

拜占庭系統普遍採用的假設條件包括:

1)拜占庭節點的行為可以是任意的,拜占庭節點之間可以共謀;

2)節點之間的錯誤是不相關的;

3)節點之間通過非同步網路連接,網路中的消息可能丟失、亂序並延時到達,但大部分協議假設消息在有限的時間里能傳達到目的地;

4)伺服器之間傳遞的信息,第三方可以嗅探到,但是不能篡改、偽造信息的內容和驗證信息的完整性。

拜占庭容錯由於其理論上的可行性而缺乏實用性,另外還需要額外的時鍾同步機制支持,演算法的復雜度也是隨節點的增加而指數級增加。

實用拜占庭容錯降低了拜占庭協議的運行復雜度,從指數級別降低到多項式級別。

PBFT是一種狀態機副本復制演算法,即服務作為狀態機進行建模,狀態機在分布式系統的不同節點進行副本復制。PBFT要求共同維護一個狀態。需要運行三類基本協議,包括一致性協議、檢查點協議和視圖更換協議。

一致性協議。一致性協議至少包含若干個階段:請求(request)、序號分配(pre-prepare)和響應(reply),可能包含相互交互(prepare),序號確認(commit)等階段。

PBFT通信模式中,每個客戶端的請求需要經過5個階段。由於客戶端不能從伺服器端獲得任何伺服器運行狀態的信息,PBFT中主節點是否發生錯誤只能由伺服器監測。如果伺服器在一段時間內都不能完成客戶端的請求,則會觸發視圖更換協議。

整個協議的基本過程如下:

1)客戶端發送請求,激活主節點的服務操作。

2)當主節點接收請求後,啟動三階段的協議以向各從節點廣播請求。

[2.1]序號分配階段,主節點給請求賦值一個序列號n,廣播序號分配消息和客戶端的請求消息m,並將構造PRE-PREPARE消息給各從節點;

[2.2]交互階段,從節點接收PRE-PREPARE消息,向其他服務節點廣播PREPARE消息;

[2.3]序號確認階段,各節點對視圖內的請求和次序進行驗證後,廣播COMMIT消息,執行收到的客戶端的請求並給客戶端以響應。

3)客戶端等待來自不同節點的響應,若有m+1個響應相同,則該響應即為運算的結果。

PBFT一般適合有對強一致性有要求的私有鏈和聯盟鏈,例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。

在有些分布式場景下,其假設條件不需要考慮拜占庭故障,而只是處理一般的死機故障。在這種情況下,採用Paxos等協議會更加高效。。PAXOS是一種基於消息傳遞且具有高度容錯特性的一致性演算法。

PAXOS中有三類角色Proposer、Acceptor及Learner,主要交互過程在Proposer和Acceptor之間。演算法流程分為兩個階段:

phase 1

a) proposer向網路內超過半數的acceptor發送prepare消息

b) acceptor正常情況下回復promise消息

phase 2

a) 在有足夠多acceptor回復promise消息時,proposer發送accept消息

b) 正常情況下acceptor回復accepted消息

流程圖如圖所示:

PAXOS協議用於微信PaxosStore中,每分鍾調用Paxos協議過程數十億次量級。

Paxos是Lamport設計的保持分布式系統一致性的協議。但由於Paxos非常復雜,比較難以理解,因此後來出現了各種不同的實現和變種。Raft是由Stanford提出的一種更易理解的一致性演算法,意在取代目前廣為使用的Paxos演算法。

Raft最初是一個用於管理復制日誌的共識演算法,它是在非拜占庭故障下達成共識的強一致協議。Raft實現共識過程如下:首先選舉一個leader,leader從客戶端接收記賬請求、完成記賬操作、生成區塊,並復制到其他記賬節點。leader有完全的管理記賬權利,例如,leader能夠決定是否接受新的交易記錄項而無需考慮其他的記賬節點,leader可能失效或與其他節點失去聯系,這時,重新選出新的leader。

在Raft中,每個節點會處於以下三種狀態中的一種:

(1)follower:所有結點都以follower的狀態開始。如果沒收到leader消息則會變成candidate狀態;

(2)candidate:會向其他結點「拉選票」,如果得到大部分的票則成為leader。這個過程就叫做Leader選舉(Leader Election);

(3)leader:所有對系統的修改都會先經過leader。每個修改都會寫一條日誌(log entry)。leader收到修改請求後的過程如下:此過程叫做日誌復制(Log Replication)

1)復制日誌到所有follower結點

2)大部分結點響應時才提交日誌

3)通知所有follower結點日誌已提交

4)所有follower也提交日誌

5)現在整個系統處於一致的狀態

Raft階段主要分為兩個,首先是leader選舉過程,然後在選舉出來的leader基礎上進行正常操作,比如日誌復制、記賬等。

(1)leader選舉

當follower在選舉時間內未收到leader的消息,則轉換為candidate狀態。在Raft系統中:

1)任何一個伺服器都可以成為候選者candidate,只要它向其他伺服器follower發出選舉自己的請求。

2)如果其他伺服器同意了,發出OK。如果在這個過程中,有一個follower宕機,沒有收到請求選舉的要求,此時候選者可以自己選自己,只要達到N/2+1的大多數票,候選人還是可以成為leader的。

3)這樣這個候選者就成為了leader領導人,它可以向選民也就是follower發出指令,比如進行記賬。

4)以後通過心跳消息進行記賬的通知。

5)一旦這個leader崩潰了,那麼follower中有一個成為候選者,並發出邀票選舉。

6)follower同意後,其成為leader,繼續承擔記賬等指導工作。

(2)日誌復制

記賬步驟如下所示:

1)假設leader已經選出,這時客戶端發出增加一個日誌的要求;

2)leader要求follower遵從他的指令,將這個新的日誌內容追加到各自日誌中;

3)大多數follower伺服器將交易記錄寫入賬本後,確認追加成功,發出確認成功信息;

4)在下一個心跳消息中,leader會通知所有follower更新確認的項目。

對於每個新的交易記錄,重復上述過程。

在這一過程中,若發生網路通信故障,使得leader不能訪問大多數follower了,那麼leader只能正常更新它能訪問的那些follower伺服器。而大多數的伺服器follower因為沒有了leader,他們將重新選舉一個候選者作為leader,然後這個leader作為代表與外界打交道,如果外界要求其添加新的交易記錄,這個新的leader就按上述步驟通知大多數follower。當網路通信恢復,原先的leader就變成follower,在失聯階段,這個老leader的任何更新都不能算確認,必須全部回滾,接收新的leader的新的更新。

在去中心賬本系統中,每個加入這個系統的節點都要保存一份完整的賬本,但每個節點卻不能同時記賬,因為節點處於不同的環境,接收不同的信息,如果同時記賬,必然導致賬本的不一致。因此通過同時來決定那個節點擁有記賬權。

在比特幣系統中,大約每10分鍾進行一輪算力競賽,競賽的勝利者,就獲得一次記賬的權力,並向其他節點同步新增賬本信息。

PoW系統的主要特徵是計算的不對稱性。工作端要做一定難度的工作才能得出一個結果,而驗證方卻很容易通過結果來檢查工作端是不是做了相應的工作。該工作量的要求是,在某個字元串後面連接一個稱為nonce的整數值串,對連接後的字元串進行SHA256哈希運算,如果得到的哈希結果(以十六進制的形式表示)是以若干個0開頭的,則驗證通過。

比特幣網路中任何一個節點,如果想生成一個新的區塊並寫入區塊鏈,必須解出比特幣網路出的PoW問題。關鍵的3個要素是 工作量證明函數、區塊及難度值 。工作量證明函數是這道題的計算方法,區塊決定了這道題的輸入數據,難度值決定了這道題所需要的計算量。

(1)工作量證明函數就是<u style="box-sizing: border-box;"> SHA256 </u>

比特幣的區塊由區塊頭及該區塊所包含的交易列表組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。

(2)難度的調整是在每個完整節點中獨立自動發生的。每2016個區塊,所有節點都會按統一的公式自動調整難度。如果區塊產生的速率比10分鍾快則增加難度,比10分鍾慢則降低難度。

公式可以總結為:新難度值=舊難度值×(過去2016個區塊花費時長/20160分鍾)

工作量證明需要有一個目標值。比特幣工作量證明的目標值(Target)的計算公式:目標值=最大目標值/難度值

其中最大目標值為一個恆定值:

目標值的大小與難度值成反比。比特幣工作量證明的達成就是礦工計算出來的 區塊哈希值必須小於目標值

(3)PoW能否解決拜占庭將軍問題

比特幣的PoW共識演算法是一種概率性的拜占庭協議(Probabilistic BA)

當不誠實的算力小於網路總算力的50%時,同時挖礦難度比較高(在大約10分鍾出一個區塊情況下)比特幣網路達到一致性的概念會隨確認區塊的數目增多而呈指數型增加。但當不誠實算力具一定規模,甚至不用接近50%的時候,比特幣的共識演算法並不能保證正確性,也就是,不能保證大多數的區塊由誠實節點來提供。

比特幣的共識演算法不適合於私有鏈和聯盟鏈。其原因首先是它是一個最終一致性共識演算法,不是一個強一致性共識演算法。第二個原因是其共識效率低。

擴展知識: 一致性

嚴格一致性,是在系統不發生任何故障,而且所有節點之間的通信無需任何時間這種理想的條件下,才能達到。這個時候整個系統就等價於一台機器了。在現實中,是不可能達到的。

強一致性,當分布式系統中更新操作完成之後,任何多個進程或線程,訪問系統都會獲得最新的值。

弱一致性,是指系統並不保證後續進程或線程的訪問都會返回最新的更新的值。系統在數據成功寫入之後,不承諾立即可以讀到最新寫入的值,也不會具體承諾多久讀到。但是會盡可能保證在某個時間級別(秒級)之後。可以讓數據達到一致性狀態。

最終一致性是弱一致性的特定形式。系統保證在沒有後續更新的前提下,系統最終返回上一次更新操作的值。也就是說,如果經過一段時間後要求能訪問到更新後的數據,則是最終一致性。

在股權證明PoS模式下,有一個名詞叫幣齡,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000,這個時候,如果你發現了一個PoS區塊,你的幣齡就會被清空為0。你每被清空365幣齡,你將會從區塊中獲得0.05個幣的利息(假定利息可理解為年利率5%),那麼在這個案例中,利息 = 3000 * 5% / 365 = 0.41個幣,這下就很有意思了,持幣有利息。

點點幣(Peercoin)是首先採用權益證明的貨幣。,點點幣的權益證明機制結合了隨機化與幣齡的概念,未使用至少30天的幣可以參與競爭下一區塊,越久和越大的幣集有更大的可能去簽名下一區塊。一旦幣的權益被用於簽名一個區塊,則幣齡將清為零,這樣必須等待至少30日才能簽署另一區塊。

PoS機制雖然考慮到了PoW的不足,但依據權益結余來選擇,會導致首富賬戶的權力更大,有可能支配記賬權。股份授權證明機制(Delegated Proof of Stake,DPoS)的出現正是基於解決PoW機制和PoS機制的這類不足。

比特股(Bitshare)是一類採用DPoS機制的密碼貨幣。它的原理是,讓每一個持有比特股的人進行投票,由此產生101位代表 , 我們可以將其理解為101個超級節點或者礦池,而這101個超級節點彼此的權利是完全相等的。如果代表不能履行他們的職責(當輪到他們時,沒能生成區塊),他們會被除名,網路會選出新的超級節點來取代他們。

比特股引入了見證人這個概念,見證人可以生成區塊,每一個持有比特股的人都可以投票選舉見證人。得到總同意票數中的前N個(N通常定義為101)候選者可以當選為見證人,當選見證人的個數(N)需滿足:至少一半的參與投票者相信N已經充分地去中心化。

見證人的候選名單每個維護周期(1天)更新一次。見證人然後隨機排列,每個見證人按序有2秒的許可權時間生成區塊,若見證人在給定的時間片不能生成區塊,區塊生成許可權交給下一個時間片對應的見證人。

比特股還設計了另外一類競選,代表競選。選出的代表擁有提出改變網路參數的特權,包括交易費用、區塊大小、見證人費用和區塊區間。若大多數代表同意所提出的改變,持股人有兩周的審查期,這期間可以罷免代表並廢止所提出的改變。這一設計確保代表技術上沒有直接修改參數的權利以及所有的網路參數的改變最終需得到持股人的同意。

Ripple(瑞波)是一種基於互聯網的開源支付協議,在Ripple的網路中,交易由客戶端(應用)發起,經過追蹤節點(tracking node)或驗證節點(validating node)把交易廣播到整個網路中。

追蹤節點的主要功能是分發交易信息以及響應客戶端的賬本請求。驗證節點除包含追蹤節點的所有功能外,還能夠通過共識協議,在賬本中增加新的賬本實例數據。

Ripple的共識達成發生在驗證節點之間,每個驗證節點都預先配置了一份可信任節點名單,稱為UNL(Unique Node List)。在名單上的節點可對交易達成進行投票。每隔幾秒,Ripple網路將進行如下共識過程:

1)每個驗證節點會不斷收到從網路發送過來的交易,通過與本地賬本數據驗證後,不合法的交易直接丟棄,合法的交易將匯總成交易候選集(candidate set)。交易候選集裡面還包括之前共識過程無法確認而遺留下來的交易。

2)每個驗證節點把自己的交易候選集作為提案發送給其他驗證節點。

3)驗證節點在收到其他節點發來的提案後,如果不是來自UNL上的節點,則忽略該提案;如果是來自UNL上的節點,就會對比提案中的交易和本地的交易候選集,如果有相同的交易,該交易就獲得一票。在一定時間內,當交易獲得超過50%的票數時,則該交易進入下一輪。沒有超過50%的交易,將留待下一次共識過程去確認。

4)驗證節點把超過50%票數的交易作為提案發給其他節點,同時提高所需票數的閾值到60%,重復步驟3)、步驟4),直到閾值達到80%。

5)驗證節點把經過80%UNL節點確認的交易正式寫入本地的賬本數據中,稱為最後關閉賬本(Last Closed Ledger),即賬本最後(最新)的狀態。

在Ripple的共識演算法中,參與投票節點的身份是事先知道的。該共識演算法只適合於許可權鏈(Permissioned chain)的場景。Ripple共識演算法的拜占庭容錯(BFT)能力為(n-1)/5,即可以容忍整個網路中20%的節點出現拜占庭錯誤而不影響正確的共識。

在區塊鏈網路中,由於應用場景的不同,所設計的目標各異,不同的區塊鏈系統採用了不同的共識演算法。一般來說,在私有鏈和聯盟鏈情況下,對一致性、正確性有很強的要求。一般來說要採用強一致性的共識演算法。而在公有鏈情況下,對一致性和正確性通常沒法做到百分之百,通常採用最終一致性(Eventual Consistency)的共識演算法。

共識演算法的選擇與應用場景高度相關,可信環境使用paxos 或者raft,帶許可的聯盟可使用pbft ,非許可鏈可以是pow,pos,ripple共識等,根據對手方信任度分級,自由選擇共識機制。

㈥ 比特幣、以太坊與IPFS挖礦的區別

比特幣和以太坊是pow算力挖礦。ipfs是存儲即挖礦,新型模式。

㈦ 北大青鳥設計培訓:區塊鏈技術中的共識演算法

關於區塊鏈技術的一些講解和知識點分析我們已經給大家分享過很多次了。
今天,銀川java課程http://www.kmbdqn.cn/就再來了解一下,區塊鏈技術中的共識演算法的一些基本定義與特點。
簡單過一下區塊鏈我們一般意識形態中的鏈是鐵鏈,由鐵鑄成,一環扣一環。
形象地,區塊鏈的也可以這么理解,只不過它不是由鐵鑄成,而是由擁有一定數據結構的塊連接而成,這是一個簡單的雛形通俗講解共識所謂共識,通俗來說,就是我們大家對某種事物的理解達成一致的意思。
比如說日常的開會討論問題,又比如判斷一個動物是不是貓,我們肉眼看了後覺得像貓,其滿足貓的特徵,那麼我們認為它是貓。
共識,是一種規則。
繼續我們的會議例子。
參與會議的人,通過開會的方式來達到數塵談論解決問題。
對比區塊鏈中,參與挖礦的礦工通過某種共識方式(演算法)來解決讓自己的賬本跟其他節點的賬本保持一致。
讓賬本保持一致的深入一層意思就是,讓鏈中區塊信息保持一致。
為什麼需要共識,不需要可不可以?當然不可以,生活中沒了共識的規則,一切亂套。
區塊鏈沒了共識的規則,各個節點各干各的,失去一致的意義。
這兩個例子的對應的關系如下:會議的人=挖礦的礦工開會=共識方式(演算法)談論薯斗禪解決問題=讓自己的賬本跟其他節點的賬本保持一致如果你對節點的概念意思不懂,請先理解為礦工,一個節點內部包含很多角色,礦工是其中之一。
共識演算法目前常見銷輪的在區塊鏈中,節點們讓自己的賬本跟其他節點的賬本保持一致的共識方式(演算法)有如下幾種:PoW,代表者是比特幣(BTC)弊端:礦池的出現,一定程度上違背了去中心化的初衷,同時也使得51%攻擊成為可能,影響其安全性。
存在巨大的算力浪費,看看礦池消耗大量的電力資源,隨著難度增加,挖出的不夠付電費PoS,代表者是以太坊(ETH),從PoW過度到PoS弊端:破壞者對網路的攻擊成本很低,擁有代幣就能競爭另外擁有代幣數量大的節點獲得記賬權的概率會更大,會使得網路共識受少數富裕賬戶支配,從而失去公正性。

㈧ 如何辯別真正的區塊鏈數字貨幣

某個數字貨幣是否是一個有價值的幣種,在目前基本屬於「天使輪」階段而言,判定標准有三個,一是團隊,二是經濟模型,三是行業需求。

團隊的隨機性太大,在此不進行討論。本文首先對數字貨幣的經濟模型進行一個詳盡地分析,在隨後的文章中,筆者會根據不同行業對部分數字貨幣進行剖析。

嚴格來講,本文所涉及的經濟模型,並不完全等同於經濟學中所述概念。特指在數字貨幣中,貨幣的共識機制與激勵機制。

一、共識機制

共識機制是區塊鏈系統中各個節點達成一致的策略和方法,應根據系統類型及應用場景的不同靈活選取。

常用的共識機制主要有PoW、PoS、DPoS、PBFT(及其變種)等。另外,基於區塊鏈技術的不同應用場景,以及各種共識機制的特性,本文按照以下維度來評價各種共識機制的技術水平:

a) 合規監管:是否支持超級許可權節點對全網節點、數據進行監管;

b) 性能效率:交易達成共識被確認的效率;

c) 資源消耗:共識過程中耗費的CPU、網路輸入輸出、存儲等計算機資源;

d) 容錯性:防攻擊、防欺詐的能力。

1 行業背景

尋找行業痛點:資產管理需要專業的團隊與知識,然而現在大多數數字貨幣投資者並不具備;數字貨幣市場行情波動巨大,在行情下挫中,投資者無法對資產進行保值。

2 自身優勢

在股票、期貨市場深耕多年,有成熟、高素質資產管理團隊;AI大數據團隊技術實力強勁。

3 市場調研

進行市場調研之後,預估未來5年內,資產管理的市值約為10億美元。

4 數字貨幣總量

在考慮預期資產管理市值、開發周期與難度後,考慮發行基於以太坊ERC20數字貨幣XT,數量20億枚,永不增發。

5 分配方式

早期投資人持有10%,團隊持有20%,商務運營10%,社區建設10%,投資者持有50%。

6 數字貨幣釋放/回購機制

釋放機制分為三類:

第一類:商務運營持幣部分為全部解鎖,用途限定為商務及運營活動;

第二類:社區建設部分的釋放機制為,社區成員發布獨家資訊、合作平台發布獨家項目進展等行為,根據參與ID數,釋放相應比例XT(發布者與參與者各獲得50%),直至全部釋放完成(釋放完成之後,後續獎勵來源於平台利潤池);

第三類:投資者持主流數字貨幣,在平台中進行資產管理,根據兌換比例,釋放一定數量的XT,早期投資人與團隊持有部分同步,按比例解鎖;

回購機制為:所得利潤(以XT計)的50%返還給持幣者;剩餘進入平台利潤池中,按月對利潤池中的50%的XT進行銷毀,直至XT總量為10億枚;其餘作為平台生態建設基金;

7 數字貨幣權益

利潤分成:持有XT,是為平台用戶,可以享受平台利潤50%的分成;

平台治理:參與平台活動享受XT獎勵、其他項目方的空投活動;

功能定製:可基於平台AI大數據,投資者可購買針對個人交易策略進行優化的服務

㈨ 深入了解區塊鏈的共識機制及演算法原理

所謂「共識機制」,是通過特殊節點的投票,在很短的時間內完成對交易的驗證和確認;對一筆交易,如果利益不相乾的若干個節點能夠達成共識,我們就可以認為全網對此也能夠達成共識。再通俗一點來講,如果中國一名微博大V、美國一名虛擬幣玩家、一名非洲留學生和一名歐洲旅行者互不相識,但他們都一致認為你是個好人,那麼基本上就可以斷定你這人還不壞。

要想整個區塊鏈網路節點維持一份相同的數據,同時保證每個參與者的公平性,整個體系的所有參與者必須要有統一的協議,也就是我們這里要將的共識演算法。比特幣所有的節點都遵循統一的協議規范。協議規范(共識演算法)由相關的共識規則組成,這些規則可以分為兩個大的核心:工作量證明與最長鏈機制。所有規則(共識)的最終體現就是比特幣的最長鏈。共識演算法的目的就是保證比特幣不停地在最長鏈條上運轉,從而保證整個記賬系統的一致性和可靠性。

區塊鏈中的用戶進行交易時不需要考慮對方的信用、不需要信任對方,也無需一個可信的中介機構或中央機構,只需要依據區塊鏈協議即可實現交易。這種不需要可信第三方中介就可以順利交易的前提是區塊鏈的共識機制,即在互不了解、信任的市場環境中,參與交易的各節點出於對自身利益考慮,沒有任何違規作弊的動機、行為,因此各節點會主動自覺遵守預先設定的規則,來判斷每一筆交易的真實性和可靠性,並將檢驗通過的記錄寫入到區塊鏈中。各節點的利益各不相同,邏輯上將它們沒有合謀欺騙作弊的動機產生,而當網路中有的節點擁有公共信譽時,這一點尤為明顯。區塊鏈技術運用基於數學原理的共識演算法,在節點之間建立「信任」網路,利用技術手段從而實現一種創新式的信用網路。

目前區款連行業內主流的共識演算法機制包含:工作量證明機制、權益證明機制、股份授權證明機制和Pool驗證池這四大類。

工作量證明機制即對於工作量的證明,是生成要加入到區塊鏈中的一筆新的交易信息(即新區塊)時必須滿足的要求。在基於工作量證明機制構建的區塊鏈網路中,節點通過計算隨機哈希散列的數值解爭奪記賬權,求得正確的數值解以生成區塊的能力是節點算力的具體表現。工作量證明機制具有完全去中心化的優點,在以工作量證明機制為共識的區塊鏈中,節點可以自由進出。大家所熟知的比特幣網路就應用工作量證明機制來生產新的貨幣。然而,由於工作量證明機制在比特幣網路中的應用已經吸引了全球計算機大部分的算力,其他想嘗試使用該機制的區塊鏈應用很難獲得同樣規模的算力來維持自身的安全。同時,基於工作量證明機制的挖礦行為還造成了大量的資源浪費,達成共識所需要的周期也較長,因此該機制並不適合商業應用。

2012年,化名Sunny King的網友推出了Peercoin,該加密電子貨幣採用工作量證明機制發行新幣,採用權益證明機制維護網路安全,這是權益證明機制在加密電子貨幣中的首次應用。與要求證明人執行一定量的計算工作不同,權益證明要求證明人提供一定數量加密貨幣的所有權即可。權益證明機制的運作方式是,當創造一個新區塊時,礦工需要創建一個「幣權」交易,交易會按照預先設定的比例把一些幣發送給礦工本身。權益證明機制根據每個節點擁有代幣的比例和時間,依據演算法等比例地降低節點的挖礦難度,從而加快了尋找隨機數的速度。這種共識機制可以縮短達成共識所需的時間,但本質上仍然需要網路中的節點進行挖礦運算。因此,PoS機制並沒有從根本上解決PoW機制難以應用於商業領域的問題。

股份授權證明機制是一種新的保障網路安全的共識機制。它在嘗試解決傳統的PoW機制和PoS機制問題的同時,還能通過實施科技式的民主抵消中心化所帶來的負面效應。

股份授權證明機制與董事會投票類似,該機制擁有一個內置的實時股權人投票系統,就像系統隨時都在召開一個永不散場的股東大會,所有股東都在這里投票決定公司決策。基於DPoS機制建立的區塊鏈的去中心化依賴於一定數量的代表,而非全體用戶。在這樣的區塊鏈中,全體節點投票選舉出一定數量的節點代表,由他們來代理全體節點確認區塊、維持系統有序運行。同時,區塊鏈中的全體節點具有隨時罷免和任命代表的權力。如果必要,全體節點可以通過投票讓現任節點代表失去代表資格,重新選舉新的代表,實現實時的民主。

股份授權證明機制可以大大縮小參與驗證和記賬節點的數量,從而達到秒級的共識驗證。然而,該共識機制仍然不能完美解決區塊鏈在商業中的應用問題,因為該共識機制無法擺脫對於代幣的依賴,而在很多商業應用中並不需要代幣的存在。

Pool驗證池基於傳統的分布式一致性技術建立,並輔之以數據驗證機制,是目前區塊鏈中廣泛使用的一種共識機制。

Pool驗證池不需要依賴代幣就可以工作,在成熟的分布式一致性演算法(Pasox、Raft)基礎之上,可以實現秒級共識驗證,更適合有多方參與的多中心商業模式。不過,Pool驗證池也存在一些不足,例如該共識機制能夠實現的分布式程度不如PoW機制等

這里主要講解區塊鏈工作量證明機制的一些演算法原理以及比特幣網路是如何證明自己的工作量的,希望大家能夠對共識演算法有一個基本的認識。

工作量證明系統的主要特徵是客戶端要做一定難度的工作來得到一個結果,驗證方則很容易通過結果來檢查客戶端是不是做了相應的工作。這種方案的一個核心特徵是不對稱性:工作對於請求方是適中中的,對於驗證方是易於驗證的。它與驗證碼不同,驗證碼是易於被人類解決而不是易於被計算機解決。

下圖所示的為工作量證明流程。

舉個例子,給個一個基本的字元創「hello,world!」,我們給出的工作量要求是,可以在這個字元創後面添加一個叫做nonce(隨機數)的整數值,對變更後(添加nonce)的字元創進行SHA-256運算,如果得到的結果(一十六進制的形式表示)以「0000」開頭的,則驗證通過。為了達到這個工作量證明的目標,需要不停地遞增nonce值,對得到的字元創進行SHA-256哈希運算。按照這個規則,需要經過4251次運算,才能找到前導為4個0的哈希散列。

通過這個示例我們對工作量證明機制有了一個初步的理解。有人或許認為如果工作量證明只是這樣一個過程,那是不是只要記住nonce為4521使計算能通過驗證就行了,當然不是了,這只是一個例子。

下面我們將輸入簡單的變更為」Hello,World!+整數值」,整數值取1~1000,也就是說將輸入變成一個1~1000的數組:Hello,World!1;Hello,World!2;...;Hello,World!1000。然後對數組中的每一個輸入依次進行上面的工作量證明—找到前導為4個0的哈希散列。

由於哈希值偽隨機的特性,根據概率論的相關知識容易計算出,預計要進行2的16次方次數的嘗試,才能得到前導為4個0的哈希散列。而統計一下剛剛進行的1000次計算的實際結果會發現,進行計算的平均次數為66958次,十分接近2的16次方(65536)。在這個例子中,數學期望的計算次數實際就是要求的「工作量」,重復進行多次的工作量證明會是一個符合統計學規律的概率事件。

統計輸入的字元創與得到對應目標結果實際使用的計算次數如下:

對於比特幣網路中的任何節點,如果想生成一個新的區塊加入到區塊鏈中,則必須解決出比特幣網路出的這道謎題。這道題的關鍵要素是工作量證明函數、區塊及難度值。工作量證明函數是這道題的計算方法,區塊是這道題的輸入數據,難度值決定了解這道題的所需要的計算量。

比特幣網路中使用的工作量證明函數正是上文提及的SHA-256。區塊其實就是在工作量證明環節產生的。曠工通過不停地構造區塊數據,檢驗每次計算出的結果是否滿足要求的工作量,從而判斷該區塊是不是符合網路難度。區塊頭即比特幣工作量證明函數的輸入數據。

難度值是礦工們挖掘的重要參考指標,它決定了曠工需要經過多少次哈希運算才能產生一個合法的區塊。比特幣網路大約每10分鍾生成一個區塊,如果在不同的全網算力條件下,新區塊的產生基本都保持這個速度,難度值必須根據全網算力的變化進行調整。總的原則即為無論挖礦能力如何,使得網路始終保持10分鍾產生一個新區塊。

難度值的調整是在每個完整節點中獨立自動發生的。每隔2016個區塊,所有節點都會按照統一的格式自動調整難度值,這個公式是由最新產生的2016個區塊的花費時長與期望時長(按每10分鍾產生一個取款,則期望時長為20160分鍾)比較得出來的,根據實際時長一期望時長的比值進行調整。也就是說,如果區塊產生的速度比10分鍾快,則增加難度值;反正,則降低難度值。用公式來表達如下:

新難度值=舊難度值*(20160分鍾/過去2016個區塊花費時長)。

工作量證明需要有一個目標值。比特幣工作量證明的目標值(Target)的計算公式如下:

目標值=最大目標值/難度值,其中最大目標值為一個恆定值

目標值的大小與難度值成反比,比特幣工作量證明的達成就是礦中計算出來的區塊哈希值必須小於目標值。

我們也可以將比特幣工作量的過程簡單的理解成,通過不停變更區塊頭(即嘗試不同nonce值)並將其作為輸入,進行SHA-256哈希運算,找出一個有特定格式哈希值的過程(即要求有一定數量的前導0),而要求的前導0個數越多,難度越大。

可以把比特幣將這道工作量證明謎題的步驟大致歸納如下:

該過程可以用下圖表示:

比特幣的工作量證明,就是我們俗稱「挖礦」所做的主要工作。理解工作量證明機制,將為我們進一步理解比特幣區塊鏈的共識機制奠定基礎。

㈩ 區塊鏈的共識機制是什麼優缺點有哪些

區塊鏈的共識機制有很多,說一個影響力最大的比特幣背後的pow共識機制,好處是安全 不可篡改 全球流通 缺點是速度太慢了 一秒鍾只能處理7筆交易

閱讀全文

與共識演算法和挖礦的區別相關的資料

熱點內容
玄幻仙俠電影 瀏覽:170
比特幣價格屏幕顯示 瀏覽:600
手機能看電影網址 瀏覽:943
什麼叫非法融資數字貨幣 瀏覽:228
1066算力zec 瀏覽:5
數字貨幣打擊地下 瀏覽:951
可以看電影院上映的電影的網站 瀏覽:396
ifps區塊鏈什麼幣 瀏覽:401
電影在線觀 瀏覽:441
女主是小三男女主健身房相遇 瀏覽:376
灰度以太坊是什麼 瀏覽:349
比特幣的交易輸入輸出 瀏覽:511
比特幣怎麼買steam充值卡 瀏覽:450
盧秀藍上山采葯的電影叫什麼名字 瀏覽:399
ipfs礦機的魅力 瀏覽:704
日本奶大的電影 瀏覽:149
看島國片的網站 瀏覽:14
12萬礦機 瀏覽:570
愛情電影激情韓國 瀏覽:57
和血戀一個級別電影 瀏覽:373