㈠ 力平行軸 力矩為什麼算出M=rXfxsinθ,並不為零啊
力F與軸平行,意味著力和矢徑夾角為零,按照M=r×F,矢徑與力角度為零,故平行於矢徑的分力力矩為零。
㈡ 力平行與軸和力垂直於軸是否力對軸的力矩都為零
力矩會使物體產生轉動或轉動的趨勢.
那麼當力平行於軸時,不會產生這種效果,所以力矩為零;
當力垂直於軸時,就有可能使軸轉動或具有轉動趨勢,所以力矩有可能不為零.
㈢ 力平行與轉軸為什麼力矩為零
力平行於軸,對應力矩不為零,但是軸反過來會對這個物體產生一個相反的力矩,二者抵消,所以與軸平行的力都不用考慮
㈣ 力與軸平行時,力矩為什麼等於0
因為力矩的定義是力乘上與力垂直的力臂
力與軸平行時沒有垂直的交點
㈤ 力矩怎麼算公式是什麼
力矩:力和力臂的乘積叫做力對轉動軸的力矩。即:M=F*L
式中M是力F對轉動軸O的力矩,凡是使物體產生反時針方向轉動效果的,定為正力矩,反之為負力矩。
單位:在國際單位制中,力矩單位是牛頓*米,簡稱:牛*米,符號:N*m。
力矩在物理學里是指作用力使物體繞著轉動軸或支點轉動的趨向。力矩的單位是牛頓-米。力矩希臘字母是 tau。力矩的概念,起源於阿基米德對杠桿的研究。轉動力矩又稱為轉矩或扭矩。力矩能夠使物體改變其旋轉運動。推擠或拖拉涉及到作用力 ,而扭轉則涉及到力矩。力矩等於徑向矢量與作用力的叉積。
力矩 (moment of force) 力對物體產生轉動作用的物理量。可以分為力對軸的矩和力對點的矩。即:M=LxF。其中L是從轉動軸到著力點的距離矢量, F是矢量力;力矩也是矢量。
力對軸的矩是力對物體產生繞某一軸轉動作用的物理量,其大小等於力在垂直於該軸的平面上的分量和此分力作用線到該軸垂直距離的乘積。例如開門時,外力F平行於門軸的分力FП不能對門產生轉動作用(圖1),因為這力已被固定軸的約束力(見約束)所平衡。對門能起轉動作用的力是F在垂直於門軸的平面上的分力F⊥,其數值F⊥=Fcosα。自F的作用點A作垂直於軸的平面П,與軸相交於O點。由實驗得知,力F對物體的轉動作用與O至F⊥的垂直距離l成正比。l稱為F⊥對軸的力臂,它等於rsinβ,其中r=OA;β是F⊥與OA的夾角。因此,力F對物體的轉動作用由Fcosα和rsinβ的乘積來確定,這個物理量稱為力F對軸的矩,它是個代數量。當α=0°和β=90°時,力F對軸的矩最大,因此,要提高轉動效率,作用力F應在軸的垂直平面內,並使其垂直於聯線OA。如果力F在軸的垂直平面內(圖2),力對軸的矩為rFsinβ。此量也可用△OAB面積的二倍來表示,其中AB=F。
㈥ 力平行與軸和力垂直於軸是否力對軸的力矩都為零
平行於軸的力,力矩不為零,但是軸會對物體產生相反的力矩,相互抵消,這種力不用考慮
垂直於軸的力,如果作用線和軸相交(過軸),則力矩為零,如果不相交,則力矩不為零。
㈦ 力與軸平行時,力矩為什麼等於0
兩向量平行
即夾角=0
所以
兩向量的外積=0向量
即力矩=0
㈧ 力與軸平行時,力矩為什麼等於0用向量解釋!謝謝啦!
兩向量平行
即夾角=0
所以
兩向量的外積=0向量
即力矩=0
㈨ 有一剛體做定軸轉動,有一個力平行於軸作用時,它的力矩怎麼算
評分作答
㈩ 力對軸的力矩怎麼求
比如開門為例子
你向外拽門
門不動
再使勁門板就掉了。
這就是力對軸的力矩為0
對固定點的意思
就可以用蹺蹺板來舉例
3個小朋友
2個人坐在
左右2邊
中間坐一個小朋友
中間的小朋友的存在與否不會影響
兩邊的小朋友游戲