Ⅰ 深度學習顯卡用amd還是英偉達
深度學習顯卡用英偉達比較好。
NVIDIA使用的人較多,所以網上的資源也比較多,容易學習和構建。而AMD的顯卡,由於很遲才推出它的編程架構,用的人比較少,所以網上的資料較少,所以很難去學習。NVIDIA在深度學習訓練方面的領先地位在MLPerf 0.6中得到了證明,這是AI訓練的第一項行業級基準測試。
深度學習顯卡的選擇:
1、選擇算力在5.0以上的
根據官方說明,在GPU算力高於5.0時,可以用來跑神經網路。算力越高,計算能力越強,建議小夥伴們在資金充足的情況下,盡量買算力高一些的。
2、盡量選擇大顯存
顯存越高,意味著性能越強悍。特別是對於CV領域的朋友們,建議至少有一個8GB顯存的顯卡。下面是英偉達的部分中高端顯卡的一些性能參數。
3、GPU幾個重要的參數
GPU架構:
不同款的GPU可能採用不同設計架構,比如GeForce 10系列的GTX 1080/1080Ti採用的是Pascal架構,而GeForce 20系列的RTX 2080/2080Ti採用的是Turing架構。不同架構的GPU,即使其他參數差不多,性能差別可能非常大。
顯存帶寬:
代表GPU晶元每秒與顯存交換的數據大小,這個值等於顯存位寬*工作頻率,單位為GB/秒,該值越大,代表GPU性能越好。Geforce GTX 1080的顯存帶寬為320GB/秒,而它的升級版Geforce RTX 2080的帶寬為448GB/秒。
顯存位寬:
代表GPU晶元每個時鍾周期內能從GPU顯存中讀取的數據大小,這個值越大代表GPU晶元和顯存之間數據交換的速度越快,性能越好。Geforce GTX 1080的顯存位寬為256bit,Geforce RTX 2080Ti顯存位寬為352bit。
GPU工作頻率:
代表GPU每秒鍾工作次數,單位為MHz,跟CPU的頻率類似。該值越大代表性能越好。
CUDA核心數量:
CUDA核心數量越大越好,Geforce GTX 1080的CUDA核心數量是2560個。而Geforce RTX 2080Ti的CUDA核心數高達4352個。
功耗:
GPU能耗,像Geforce這種消費級的顯卡一般功耗非常高,Geforce GTX 1080的最大功耗為175W,Tesla P4的最大功耗為75W。像那種數據中心大規模級別的GPU部署,低功耗的顯卡一年電費能省很多。